Urd: a Matlab tool for simulating simple neural networks

Sid Visser
May 19, 2012

1 Introduction

Computational modeling of neural networks in the mammalian nervous system can provide a better
understanding of some of the complex functions that we observe. Depending on the structure that
is studied, these models can grow both in size and complexity. Clearly, if the model design is more
complex, implementing the model on a computer will be a tedious and time consuming task.

Several software packages exist that offer an extended environment for simulating neurons and
networks thereof, such as Neuron, GENESIS, PyNN, and NEST. These environments are typically
very large programs that offer many specialized features to their users, for instance: subtle changes
in ion-channel dynamics and very realistic 3d reconstructions of axonic and dendritic structures. A
clear disadvantage arises here: if your model design is a simple network of neurons, implementing it
in these dedicated packages can already be hard; especially if you are unfamiliar with the language
and its features.

To overcome this problem, it seems natural to have a simulation environment available in Matlab
as well, since this programming language is very accessible. Furthermore, Matlab is already acces-
sible at most research institutes, so installation of new software could be avoided in this manner.
A draft of this package, with the name Urd, is now available.

2 Program structure

The Matlab programming language is optimized for vectorized equations. While the ODEs for the
neurons are easily vectorized (since all neurons obey similar dynamical systems), using a default
Matlab ODE solver, such as ode45 or ode23s, is far from optimal. This is mainly because the neuron
dynamics are stiff, sometimes discontinuous, and all neurons are in different phases relatively to
each other. Furthermore, if axonic delays are introduced in the system the simulation times will
increase significantly.

For that reason Urd is a Matlab interface for the Verdandi simulation environment. The latter
one is a custom C++ simulation program specialized for simple neural networks. This offers the
following program structure:

e The user implements a model in Matlab, using Urd,

e Upon execution of the program, Urd interprets the user input and writes this to the files
Inits.txt, CellIn.txt, SynIn.txt, and ConIn.txt, then

e Urd automatically starts Verdandi, which reads the input files, performs the simulations, and
writes simulation results to Vm.txt and Spikes.txt,

o These files can be read again for post-processing in Urd, or even Skuld! for a more in-depth
analysis of the results.

Now that the program flow is described, attention will be given to the specific features of Urd.

3 Model structure

A model implemented in Urd consists of two main components: populations and connectivities.
Population:

e A population is an ensemble of neurons of the same type (from a model point of view),

e Every population has a unique name,

e Every neuron in a population has a position,

e Parameters can be set for the whole population, as well as for individual cells,

e Initial conditions can be set for the whole population, as well as for individual cells.
Connectivity:

e A connectivity is a set of connections from neurons in population A to population B, with
synapses of type S.

Connections between A and B can be given as a matrix.

Connections between A and B can be determined using distance dependent probability func-
tion.

Each connection can have a unique weight and delay.

Depending on the type S of synapses, dynamics have to be specified.

4 Urd syntax

Urd consists of two commands: AddPopulation and AddConnectivity, and each command requires
a set of (possible multiple) attributes with corresponding arguments. For example:

command (Attl, Argl, Att2, Arg2a, Arg2b, ..., Attn, Argn)

For each command, the required attributes and allowed arguments are given in the text and tables
on the following pages.

Table 1: Allowed interpretations for aNumber

Code fragment ‘ Notes ‘ Description
., JAtt’, ¢, ... ¢ scalar Attribute’s value is set to ¢ for all instances
L, CAtt?, Vo, L. V' column vector | Attribute of object i is set to V;
., ’Att’, ’Uniform’, [a,b] , ... | a,bscalar Attribute’s value is uniformly distributed U([a, b])
., ’Att’, ’Normal’, [u,0], ... | p,o scalar Attribute’s value is normal distributed N (p, o)

4.1 aNumber

In some of the columns the argument aNumber for attribute >Att’ is given, which allows the
definitions given in Table 1.

4.2 AddPopulation

The main attributes for population command are given by:

Table 2: Attributes for AddPopulation

Attribute ‘ Description ‘ Argument(s)

’Name’ Name of the population String

’nCell’ Number of neurons in population | Positive integer

’Position’ | Position of each cell nCell X d-array, 1 <d <3

’Type’ Type of neurons in population ’LeakyIntegrate’, or ’Izhikevich’, or ’Poisson’

Depending on the neuron type chosen, different attributes are required for the AddPopulation to
execute properly, see Tables 3, 4, and 5. Precise definitions of these single compartment models
and relevant parameter values are easily found in literature; they will not be treated here.

Table 3: Additional attributes for AddPopulation(..., ’Type’, ’LeakylIntegrate’, ...)

Attribute Description Argument(s)
’C? Membrane capacitance aNumber
’VRest’ Resting membrane potential (mV) aNumber

’VThreshold’ | Membrane potential at which a spike is gen- | aNumber
erated and neuron is set to ’VReset’

’VReset’ Value at which membrane potential is reset | aNumber
after spike (mV)
7y Initial values for membrane potentials (mV) aNumber

4.3 AddConnectivity

This command’s attributes are shown in Table 6.

ISkuld is another Matlab toolbox that offers a wide variety of tools for post-processing and analysis of simulation
results of neural networks.

Table 4: Additional attributes for AddPopulation(..., ’Type’, ’Izhikevich’, ...)

Attribute | Description Argument(s)
‘a’ Parameter a aNumber
b’ Parameter b aNumber
’c? Parameter ¢ aNumber
ok Parameter d aNumber
T Constant injected current aNumber
' Initial values for membrane potentials (mV) | aNumber
‘w? Initial values for recovery variable aNumber

Table 5: Additional attributes for AddPopulation(..., ’Type’, ’Poisson’, ...)
Attribute | Description | Argument(s)
’Lambda’ | Rate of Poisson process (1/s) | aNumber

Table 6: Attributes for AddConnectivity

Attribute Description Argument(s)

’From’ Population(s) that make connections String or cell with strings
’To? Population(s) that reveice connections String or cell with strings
’Connections’ | Precisely specifies the connections See text

’Delay’ Specifies the delays used in the network | See Table text

’Type’ Type of synapse ’Delta’ or ’Exponential’

The options for the attribute ’Connections’ are numerous, so they are provided with more detail
in the following list:

e ’Connections’, ’Matrix’, M , ..., with M a n; X ng-matrix for n; and ny the number
of neurons in *To’ and ’From’ populations respectively:
If M;; # 0 a connection is made from neuron j in source population to neuron 7 in target
population. The weight of this connection is given by M;;.

e ’Connections’, ’Generate’, ’Probabiliy’, P, ’Weight’, W, ..., for P,W either
scalar or function handles depending on distance:
All pairs of neurons in source and target populations have probability P (optionally dependent
on distance between neurons) to make a connection with weight W (optionally dependent on
distance).

For the delays, the following options are available:

e ’Delay’, ’Matrix’, T, ..., with M an,xn -matrix for n, and ny the number of neurons
in >To’ and ’From’ populations respectively (only allowed is ’Connections’ also is defined
using a matrix):

For a connection from neuron j to neuron i, the delay is set to T; ; (in ms).

e ’Delay’, ’Function’, F, ..., with F either scalar constant or function handle depending
on distance:
The delay of a connection is given by F' (optionally dependent on distance).

If the exponential synapse is chosen, additional attributes have to defined; see Table 7.

Table 7: Additional attributes for AddPopulation(..., ’Type’, ’Izhikevich’,
Attribute ‘ Description

| Argument(s)
’Tau’ Time constant of decay (ms) aNumber
B’ Reversal potential of postsynaptic current (mV) | aNumber
‘g’ Maximal conductance of postsynaptic current aNumber

