
This Handbook is partially out of date!

Contents

Introduction 2

Installation 2
Directories and files . 3

Program call 3
Options . 4

“GUI” (image file viewer) . 4

The language 4
Global variables . 5

Area sizes . 5

Algorithm . 5

Commands . 7

Controls . 8

Macros . 8

Comments . 8

Emacs and color . 8

Help 9
Find a function . 9

Debugging . 9

Maintenance 10
Introduce a new function . 10

An example 11

About 11

1

Simulator Handbook

Introduction

With this neural net simulator, you edit your own network and training algorithm using
a built-in “batch”-language. In this language, you specify every detail of your algo-
rithm. You may extend the language by adding and compiling to the simulator your
own functions written in C. The language is pre-structured to work itself down from
iterations to relaxations (over time) to area (layer) visits to neuron visits. A variety
of networks with connectionist neurons can be programmed with ease, in particular
if neuronal updates are local. Examples are: Hopfield networks, Boltzmann- and
Helmholtz machines, backpropagation-trained multi-layer perceptrons. Non-local in-
teractions can also be implemented (like winner-finding within one layer of a Kohonen
network) but severely non-local operations (like matrix inversion for standard ICA) will
make you program your whole algorithm in a C-procedure.

look.tcl

iter.exe

mynet

architecture
setup

algorithm
setup
(language)

activations

weights

/tmp/obs_W_0_0.pnm

/tmp/obs_R_0.pnm

Figure 1: Information flow: language file → code → image files → display tool.

The activations as well as the neuronal weights (synaptic strengths) shall be written
periodically into the /tmp/coco/ directory of your computer as image files. Then a
separate, non-interactive GUI “look.tcl” will collect and display these results.

Installation
The simulator has been tested on a couple of UNIX/Linux systems and on Windows
with cygwin. It requires something equivalent to (i) g++ for compilation, (ii) lex and
yacc to generate the parser of the language file and (iii) Tcl/Tk for the result viewer
look.tcl. Get the file coco06.tar. Then type tar xvf coco06.tar which creates the
subdirectory coco06/ with the simulator in it. Type ./make in coco06/ which creates
the executable cococo (and also prae.exe as a pre-processor).

2

figs/informationflow.eps

Directories and files

This structure is currently undergoing frequent changes. Don’t take serious!
coco06/ main directory
cococo the executable
look.tcl “GUI” (image viewer)
prae.exe called by cococo, praeprocesses the language file
make only for convenience here

d/ data used for training

src/kernel/ C source files
Makefile type make to compile the program
series.h typedef struct’s: SIMULATION SERIES SWEEP STAY COMMAND

coco.h typedef struct’s: STATE AREA AGENT PARAMS DATA

coco.c main(), calls do_simulation

relax.c .h do_simulation does nested loops: series - sweep - stay - command
vehicle.c .h memory allocation, initialization, function assignments

local.c .h functions for local computations on neurons
utils.c .h e.g. for matrix memory allocation

src/parser/ parser directory for the language
Makefile called by src/Makefile, this makes prae.exe

prae.c praeprocesses the language file
r.lex definitions of lexical elements
r.yacc.c, .h grammar definition (also allocates SIMULATION AGENT PARAMS)

v/ network description files (language)
mylanguagefile edit your own file!

docu/ e.g. handbook.ps

/tmp/coco/ activations and weights as pnm-image files

Program call

In general, start the program in coco04/ with the following call:
./cococo -file v/mylanguagefile

This will start the program with it reading the language file v/mylanguagefile. The
program will allocate memory for the network you defined, it will run the activation &
training algorithm over and over again, as you have described in your language file.
Make sure a directory for the activations & weights exists (e.g. /tmp/coco/).

3

Options

-analyze 1 The weights will not be exported/overwritten into files.
-seed n Initializes the random seed to number n.
-set string value Fill-in the macro which appears as $string in the language

file with value. This option invites you to write a shell script
which calls the simulator with different parameters over and
over again.

“GUI” (image file viewer)

After starting the program, start from a separate shell the file viewer like:
./look.tcl a w 0 1

where “a” means display activation files, “w” means display weight and threshold files,
and numbers “n” specify the areas from which to collect these files. In the window,
click the left mouse button or Return to reload the files, right mouse button to quit.

The program cococo writes the activations to be observed and all weights and thresh-
olds into the directory /tmp/coco/ (this directory is actually set in the language file,
and is a variable in the file look.tcl). The file names are composed of (i) the beginning
“obs_”, (ii) the activation or weight name (a letter), or “Th” for thresholds, followed via
underscore “_” by the area number(s) involved and (iii) the ending “.pnm”. For exam-
ple, weights W from area 0 to area 1 are called “obs_W_1_0.pnm”. This image file can
also be used to import the weights, but a file “obs_W_1_0.ext” with higher resolution
for the weight values will actually be used. The image viewer will display below the
image files their truncated names as well as the minimum and maximum values.

If you want to change the sizes for display, you can change the zoom-factor in the tcl-
script file look.tcl. Search for the expression “zoom” within look.tcl and change
the number behind (must be an integer).

If you want the files to be reloaded and displayed continually, switch to auto-update
by editing look.tcl: change the initialization of the variable, set AUTOREFRESH 0 , to:
set AUTOREFRESH 1.

The language

A language file has three main parts, describing (i) global variables, (ii) area sizes
and (iii) the algorithm.

4

Global variables

Here you define first three specific global variables and then introduce an arbitrary
number of own standardized pointers to memory space.

global {
iter is the time at which the simulation starts, usually 0. Setting might be

ignored here!
areas is the number of areas. For example, “2” will create areas 0 and 1.
mult is the multiplicity of activation values. Use “1” here, since more aren’t

supported by any functions yet.

ptr1 " " here some standardized pointers to memory space are introduced,
to be used in the algorithm by their name (e.g. ptr1). Pointers have
a void data pointer entry and a string which can be set here. They
can be useful here to set directories or files for data import or export.

}

Area sizes

The part introduced by “all” defines the areas’ default sizes (areas are rectangular):

all {

d_a is the vertically displayed size, indexed by the slow counting index.
d_b is the horizontally displayed size, indexed by the fast counting index.
}

Individual properties of specific areas, for example for area 0 may be specified, e.g.:

area 0 {
d_b Only those properties that differ from the defaults need to be speci-

fied, but don’t leave this list empty (may cause syntax problems)!
}

Algorithm

Structures contain all information about the algorithm in 4 nested levels. From the
outside to the inside, we find first “series”, “sweeps” and “stays” which are concerned
with repetitions, time-, area- and neuron selection. The inner level, “commands”, does
essentials like taking data, computing neuronal activations or doing the learning.

1. “series” repeat over and over again, e.g. for each time picking up a new data
point. The syntax to repeat ilen times is:

series (ilen) {

}

5

2. “sweeps” relaxate in time, i.e. with the one data point, update the neurons pos-
sibly a couple of times. The syntax to iterate (relaxate) from time begin to time
end while visiting the areas (“stays”) in the area_order given. is:

sw (begin ; end ; area_order) {

}

3. “stays” visit a given area. The syntax to visit neurons on area no. area in the
neuron_order given is:

area (neuron_order)

4. “commands” compute a “target” value on a neuron, using a selected “function”,
“source area(s)”, “source value(s)” and optional parameters. The syntax is:

{ target ; function ; source area(s) ; source value(s) ; parameters }

Note that since stays are nested within sweeps, first all areas within a sweep are
visited at relaxation time 0, and only then all areas at time 1 and so on.
Find out more about these structures in the header file series.h. Starting from the back, you will find
that each outer structure has (a) pointer(s) to its “nextmost” inner structure as well as an integer telling
how many of those inner structures are contained. From outside to the inside we have the structures:
SIMULATION, SERIES, SWEEP, STAY, COMMAND. The outermost, SIMULATION structure is a cover to allow
for several SERIES, but it is not reflected in the language.

Find out more about the use of these structures in the program file relax.c. There, from the out-

ermost to the innermost (in relax.c from back to front), each structure is worked over to work over

the structures contained within. The functions are: do_simulation, do_series, do_sweep, do_stay,

do_command.

The area_order argument of a sweep is usually “order” so that stays are selected in
order. The arguments “random” or “propto” choose the stays randomly. We need this
only for a Glauber dynamics in an attractor network with several layers (see relax.c

if you want to use these).

The neuron_order argument of a stay is usually “o” to select the neurons in order, “r”
to select them randomly or “s” to shuffle, i.e. to select them randomly in a way that
each comes once. Here, a command is done locally on one neuron.

The neuron_order parameter “t” (for total) of a stay, however, determines that a com-
mand is only done once on a whole area. This is appropriate for some functions, e.g.
a non-local function to find the maximum-active neuron. Its use therefore implies the
use of an appropriate function in the respective command.

The area_order parameter “alltime” of a sweep even determines that a command is
done only once on an area for a whole sweep, i.e. at all time steps of that relaxation
and, of course, for all neurons in the respective areas. Appropriate functions then
have to be used in all commands under that sweep. This is convenient for functions
that assign training data to the neural activations or for functions to export the acti-
vations for display. The relaxation duration parameters begin and end are internally

6

passed on as parameters, and the neuron_order parameters of the stays are ignored
here.

0 1 2 rlent =

t alltimeo, r, s

Figure 2: Function Scopes. Each of the 4 larger squares shows the neurons of one
square area at one relaxation time step, in the way it is also displayed in the GUI
look.tcl. 4 relaxation steps are performed, from t = 0 to t = rlen. The circles denote
one invocation of the corresponding command function: if the stay’s neuron_order
argument is “o”, “r” or “s”, then the function is executed for every neuron. If it is “t”, the
function will be executed only once for an area. If the sweep’s area_order argument is
alltime, then the command function is invoked only once during a whole relaxation.

Commands Only the targets are updated within a command. Every command has a
neural activation as target which is denoted by a capital letter from A to Z. Additionally,
after a “,” (comma), a standardized pointer, or several separated by a “+” symbol may
be used, e.g. for weights. The pointers allow read and write access by the command
function and they may have been introduced already in the global section of the
language file in which case their string argument is already initialized.

The function is what computes the target. Its string name is similar to the C-procedure
name. Function keys in the C-program denote whether a function is used for ’s’=single
(“o”, “r” or “s”) neuron update, for ’t’=total area update or invoked in a ’a’=alltime
manner. For sloppy use, ’v’=versatile (total or alltime) or ’n’=nevermind (single or
total or alltime) are also supported.

Source areas are denoted by the area numbers from which to take the source values
which are activations (letters from A to Z). Several source areas can be separated by
a “,” or by a “+”, and the same structure of “,” and “+” must then be reflected in the
source values so that they are taken from the correct areas. If the source area field
is left empty, then the area is taken from the stay. If the source value field is empty,
then it is the same as target.

Some functions use optional parameters which are all of data type “double”. They
are arranged in a matrix named “quantums” in the C-code, such that, for example,
quantums[0][0] and quantums[1][0] have to be separated by a “,” whereas quan-

tums[0][0] and quantums[0][1] have to be separated by a “+” in the command.

7

figs/functionscope.eps

Controls

The language support the control structure if (argument) which can be placed be-
fore a series, a sweep or a stay, but only one at each position, i.e. no directly nested
controls! If takes either a single integer argument (that is usually used as a Macro,
see below), in which case it is TRUE if the argument is larger than zero. If it has two
integer arguments, then one is usually a Macro integer, the other is the keyword “iter”
denoting the iter’th iteration of the whole series. These two integers are compared
via the symbols “=”, “<”, “>” or “%”. The modulo sign “%” leads to TRUE if the left in-
teger modulo the right integer is zero, i.e. if the left is a multiple of the right argument.
See the file parser/r.yacc.c for details.

Macros

It is possible to assign a string a value and to obtain that value further down in the
language file from the string. The syntax is:

set string value (the “set” must be at the beginning of a line!)
The value can then be obtained via

$string

The string may also be defined as an option to the program call (see above). Then,
later assignments in the language file will be ignored.

Comments

Use them frequently in the language file. They have the form
/* This is a comment. */

In order to comment-out larger regions (including /* */-comments) use
[

out-commented code
]

Each of the comments cannot be nested. Beware of “[”, “]” signs within comments!

Emacs and color

It is helpful to mark pieces of the language file with color, but the editor emacs doesn’t
automatically save the color information. Only if you switch to “enriched” mode, then
emacs writes files with additional information (similar to html) which, however, the
program cannot parse. Thus, we will maintain two files, the actual language file and
another with “enriched” information which should be given the ending .enr.

8

In order to ease the work of: saving – switching mode – saving – switching mode back,
you should copy and paste the emacs-lisp code in tools/.emacs into your .emacs file
(in your home directory). Then, typing ALT_x save-enriched (meaning ALT and x

simultaneously), makes emacs write the two files as desired. The one with ending
.enr has the color information and should be loaded into emacs, the one without the
ending is plain and should be given as file argument to the program cococo.

Help

There is no built-in help, but most functions are well documented in the C-code.

Find a function

Use UNIX functions to find a C-function in the src/ directory. Type:
grep function_name *.c

When you know the file name type:
less file_name.c

Then use the search functionality of less by typing:
/ search_word

Debugging

• Parser level: The language file is reproduced on program output so that you can
check whether it has been correctly parsed.

• Language level: Usually, a language file isn’t right at the first try. Think about
the order of calls, the times within relaxations that a variable is available, bound-
aries, function parameters, exceptions (stay has order “t” for a “total”-function,
etc.). Read the comments and the code of the functions which are used.

• Program level: If you have a segmentation error in an unknown function, the
following will create additional debugging output which will lead you to it. Edit
the file coco.h and change in the line

#define REPORT_ERR 0

the “0” to a “1”. Don’t forget to re-compile.

• Function level: Debug the C-code of an identified function using
fprintf(stderr, ...).

9

Maintenance

Frequently, functions are added or changed, as well as structural parts which may
affect the language. So if you install the newest version, your older language files
may have to be updated. If you want additions or modifications to the C-code to be
incorporated into the simulator, then email these together with a demo language file
to the maintainer at <Cornelius.Weber@sunderland.ac.uk>.

Introduce a new function

If you write a new function for use in the language, you should first consider which
class of functions it should belong to: local-, feed-, total-, weight-, observe- or
data- functions. The choice depends on the variables, parameters or data this func-
tion must have access to and on its usage. Generally, choose the simplest possible
class!

As an example, let us assume we want to introduce a function which returns the sum
of two (activation) values on one node (neuron). This is, of course, a prototypical
example of a local-function (if these two values are not to be taken at different
relaxation time steps). The following steps have to be done:

0. Before you implement the function, test-write the whole language file which
includes it in order to see, whether the concept works. Our example function
may be used like:

{T; local_sum; , ; R, S; }

On all neurons of the area (given in the stay), the value R + S shall be written
to T .

1. Write the commented procedure, here in the file local.c:

/******************************* local_sum ***********************/

/* Returns the sum of two arguments. Does not use parameters. */

double local_sum (double *par, double val1, double val2) {

return (val1 + val2);

}

2. Publish the function prototype in the header file local.h:

double local_sum (double *par, double val1, double val2);

10

3. Add the function to the function table in vehicle.c:

if (!strcmp (cmd->func_name, "local_sum"))

cmd->localfunc = local_sum;

4. Recompile, done.

An example

View the example language file v/HopfieldContinuous(.enr) with emacs. Widen
the editor to accommodate ∼ 140 characters in one line. Make sure the directory
/tmp/coco/ exists.

Run cococo -file v/HopfieldContinuous

and then (from another terminal) look.tcl a w 0.

About

This simulator was developed to bridge the gap between pure C-code that becomes
messy over time and simulators (such as SNNS) which restrict the user too much. It
is meant as a scheme to organize new C-code that piles up over further development.
New versions are not compatible with older ones, sorry.

The need for it arose from testing new neural network learning algorithms with differ-
ent architectures, in order to explain cortico-cortical connections (hence the name).
See the publication: Emergence of modularity within one sheet of intrinsically active
stochastic neurons. C. Weber and K. Obermayer. Proc. ICONIP, 732-737 (2000).

Correspondence: Dr. Cornelius Weber, Room 0.318, Frankfurt Institute for Advanced
Studies, Johann Wolfgang Goethe University, Max-von-Laue Str. 1, 60438 Frankfurt
am Main, Germany. Tel: +49 69 798 47536. Fax: +49 69 798 47611.
WWW: http://fias.uni-frankfurt.de/∼cweber/
Email: c.weber@fias.uni-frankfurt.de

11

	Introduction
	Installation
	Directories and files

	Program call
	Options
	``GUI'' (image file viewer)

	The language
	Global variables
	Area sizes
	Algorithm
	Commands

	Controls
	Macros
	Comments
	Emacs and bluecredogreenlmagentaomygreenr

	Help
	Find a function
	Debugging

	Maintenance
	Introduce a new function

	An example
	About

