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Abstract

Automated parameter search methods are commonly used to optimize compartment model parameters. An important step in

parameter fitting is selecting an objective function that represents key differences between model and experimental data. We construct an

objective function that includes both time-aligned action potential shape error and errors in firing rate and firing regularity. We then

implement a variant of simulated annealing that introduces a recentering algorithm to handle infeasible points outside the boundary

constraints. We show how our objective function captures essential features of neuronal firing patterns, and why our boundary

management technique is superior to previous approaches.

r 2006 Elsevier B.V. All rights reserved.

Keywords: Parameter search; Action potential; Optimization; Simulated annealing; Error
1. Introduction

Compartmental neuron models often have many para-
meters, only loosely constrained within physiologically
plausible ranges, which are difficult to estimate manually.
Parameter estimation can be facilitated by automated
search methods that minimize an objective, or error
function representing salient differences between simulated
and experimental (‘‘target’’) data. Our interest lies in
modeling neurons of the central vestibular system, for
which firing regularity and dynamics vary widely across the
population [15]. Action potential (AP) shape, including the
shape of the afterhyperpolarization, has been shown to be a
critical determinant of neuronal firing dynamics and
discharge regularity [1,7]. Although previous modeling
studies have included several important AP features and
neuronal firing characteristics in their objective functions
e front matter r 2006 Elsevier B.V. All rights reserved.
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[16,18], few have included the entire AP shape. A recent
study [4] calculated AP shape error as the mean-squared
difference between target and model voltage traces, which
yields large errors when the model and target APs differ
even slightly in time. We present an objective function that
avoids this problem by first aligning target and model APs,
then calculating the root mean-squared (RMS) error. Our
function also includes errors in firing rate and discharge
regularity.
Vanier and Bower [18] recently found that simplex-based

simulated annealing [10,13] can successfully optimize
compartmental neuron models. We find that the perfor-
mance of simulated annealing algorithm of Vanier and
Bower [18] is impaired by the ‘‘wraparound’’ boundary
condition they applied when the algorithm encounters an
infeasible point in parameter space: one that lies outside
the specified boundaries. Such a point lying beyond one
side of the parameter space is relocated to the opposite side
of the parameter space, by the amount of the overshoot.
Our parameter search method uses a variant of simplex-
based simulated annealing that avoids infeasible points by
‘‘recentering’’ such points about the current minimum [2].
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We demonstrate that the recentering method is superior to
the wraparound method, and that our objective function is
effective in guiding the parameter search.
Table 1

Parameters used to generate target data

Ion channel ḡ (mS/cm2) Passive parameters

Na 10 ḡL (mS/cm2) 0.3

K 4 Cm (mF/cm2) 1

K(A) 0 radius (mm) 15.5

Ca 0.25 Calcium parameters

K(Ca) 1 Kp (Mcm2/mC) 0.05

NaP 0.05 R (1/ms) 0.0125
2. Methods

2.1. Mathematical model

The NEURON simulation environment [8] was used for
this study. The efficacy of our optimization scheme and
objective function (available online [11]) was tested using
the six-conductance, single-compartment model of Av-Ron
and Vidal [1] which can simulate the AP shapes and
response dynamics of medial vestibular nucleus (MVN)
neurons. The transient sodium (Na) and delayed rectifier
potassium (K) currents were described by the Fitzhugh–
Nagumo model [5,12]. Remaining active currents (transient
A-type potassium (K(A)), high-voltage activated calcium
(Ca), calcium-dependent potassium (K(Ca)), persistent
sodium (NaP)), were described by Hodgkin–Huxley
formalism. With these currents, membrane capacitance
Cm (mF/cm2), and passive leak conductance (L), membrane
potential V was given by

Cm
dV

dt
¼ �INa � IK � IKðAÞ � ICa � IKðCaÞ � INaP � IL,

(1)

where the current Is for the ion species s was described by

I s ¼ ḡsa
ps
s bqs

s ðV � V sÞ. (2)

Here, ḡs is the maximal conductance of a membrane patch
(mS/cm2), as and bs are the activation and inactivation
variables with gating exponents ps and qs, respectively, and
Vs is the reversal potential (mV). Equations describing the
change in activation variables and ion channel kinetic
parameters were taken directly from the MVN-model [1].
Changes in calcium concentration, C (mM), were described
by

dC

dt
¼ Kpð�ICaÞ � RC, (3)
Fig. 1. (A) Target (dashed) and model (solid) data. (B) The window W, center

(C) Data contained in the model window are shifted to align with data in th

shape error.
where Kp (M cm2/mC) is an influx parameter converting
calcium current to concentration, and R (1/ms) represents
the calcium removal rate due to diffusion, buffering, and
intracellular stores. Target data (Fig. 1A, dashed line) were
generated by varying the parameters controlling maximal
conductances and calcium kinetics to produce a model
neuron which fires spontaneously at a frequency consistent
with extracellular recordings of goldfish Area II neurons in
vivo [15]. (see Table 1).
2.2. Objective function

Target and sample model data are shown in Fig. 1A. The
objective function is a linear combination of AP shape, firing
rate, and firing regularity error, with weights of 5, 10, and
100, respectively. AP shape error is determined by comparing
the shape of the ith target AP within a time window W,
centered on the AP peak, to the shape of the ith model AP
within a similar window (Fig. 1B). Data in the target window
are translated in time to align with data in the model window,
and the root mean squared (RMS) error between the two
traces is calculated separately for each model AP (Fig. 1C)
over a 500ms interval. The user specifies W before the search;
APs are identified automatically. Instantaneous firing rates
and discharge coefficient of variation (CV [17]) of the target
and model data are also calculated. Differences between
mean and standard deviation of these values comprise the
firing rate and firing regularity errors.
ed on the ith target AP (dark gray), and on the ith model AP (light gray).

e target window. The RMS error between these traces comprises the AP
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2.3. Simulated annealing

The recentering method [2] was implemented as a
modification of the unconstrained simulated annealing
algorithm [3,13]. The search visits consecutive points in
parameter space [10,13]. Uphill moves are accepted with a
probability proportional to a parameter that starts out high
and decreases as the search continues. Each infeasible point
is replaced by a point randomly selected from a tempera-
ture-dependent neighborhood of the current minimum [2].

2.4. Model optimization

Optimizations by the recentering and wraparound
methods included either two parameters (ḡNa, ḡK) or seven
parameters (ḡNa, ḡK, ḡKðAÞ, ḡKðCaÞ, ḡCa, Kp, R). Two-
parameter searches were performed within narrow, bio-
physically plausible parameter ranges (N2), intermediate
ranges (I2) and wide ranges (W2). Seven-parameter
searches were performed for the narrow (N7) and
intermediate (I7) parameter ranges. Robustness was
evaluated by performing multiple searches from initial
points chosen randomly within the narrow range (n ¼ 50
searches for N2, N7, I2 and I7; n ¼ 20 for W2).

2.5. Statistical methods

Each search returns a set of parameters corresponding to
the optimal model encountered during the search and the
associated model error, as determined by evaluation of the
objective function. For each optimization condition (N2,
Fig. 2. (A–D) Minimum error vs. simulation number (median and 95% confid

methods, for the (A) N2, (B) N7, (C) I2, and (D) I7 parameter searches. (E, F

search for the (E) recenter and (F) wraparound condition, compared to target

been shifted vertically by 10mV, otherwise traces would superimpose.
N7, I2, I7, W2), we compared the error sets returned by
wraparound and recentering methods, using the paired-
samples t-test (normally distributed samples: Kolmogorov–
Smirnov test) or the Wilcoxon signed rank test (non-
normally distributed samples). The optimal parameters
returned by each method were then compared to target
values using either the one-sample t-test or the Wilcoxon
signed rank test. A Bonferroni correction ensured an
overall significance level of 0.05.
3. Results

Fig. 2A shows the median model error and 95%
confidence interval of the N2 searches for the recentering
(solid) and wraparound (dashed) methods, as a function of
simulation number. Under this condition, the wraparound
and recentering methods performed equally well. Under all
other optimization conditions, the recentering method
identified models with significantly smaller errors than
the wraparound method, and identified them more quickly
(Fig. 2B–D; W2 not shown). Whereas the voltage trace of
the optimal recentering model (Fig. 2E, shifted vertically
by 10mV) from an N7 search superimposed with the target
data, the optimal wraparound model exhibited a significant
shape error (Fig. 2F).
The larger error of the wraparound method is a direct

result of the imposed boundary condition. Fig. 3 shows
(ḡNa, ḡK) pairs tested by the recentering (A) and wrap-
around (B) methods, for a two-parameter search with wide
bounds. Dashed lines denote target values. The recentering
method identified the target as its optimal model relatively
ence interval) for the recenter (solid) and wraparound (dashed) boundary

) Voltage traces for the optimal models (solid lines) identified from an N7

data (dashed). Insets show shape error detail. In (E), the model trace has
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Fig. 3. Points tested for the recenter (A) and wraparound (B) methods for a W2 search. Points denote ðḡNa; ḡKÞ pairs tested at early (open squares),

intermediate (gray triangles), and late (black circles) times. Solid lines denote boundary constraints; dashed lines mark target values. Arrows show the

point of search convergence. In (B), this point differs from the global minimum visited by the search, marked by an ‘X’.
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early in the search (black circles), and converged there
(black arrow). In contrast, points visited by the wrap-
around method lie near the boundary (solid lines, Fig. 3B)
almost exclusively. At a time in the search with a low
probability of escaping a local minimum, the search
algorithm encountered a value of ḡNa below the lower
boundary. The wraparound condition reassigned this point
to one with a high ḡNa value near the upper boundary. The
search never recovered, converging to a point near the
upper boundary (black arrow).

While the recentering method was superior in all optimiza-
tion conditions, the efficiency of target parameter recovery
varied with the difficulty of the problem. For two-parameter
searches, both parameters were recovered reliably by the
recentering method, however differences between target and
optimal model parameters increased steadily with the number
of parameters and the width of parameter boundaries. This
phenomenon is not due to a deficiency of the search method;
rather, it arises because models with widely different
parameter values can exhibit similar behavior [6,14].

4. Discussion

We have constructed an objective function that effec-
tively compares the AP shape and firing statistics of a
compartmental model against target data in simulated
annealing-based parameter optimization. The recentering
method of boundary management is a significant improve-
ment over the wraparound method, regardless of the size of
imposed physiologic boundaries. This is an important step
forward in reproducing a range of neuronal responses
whose dynamics depend on AP shape. Future studies will
extend the objective function to include time-modulated
firing rate error and will investigate the use of genetic
algorithms based search [9].
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