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1. Background Information 

1.1. Biological Background and Hybrid Automata 

Excitable cells are a type of cells that respond to electrical stimuli with electrical 

signals known as Action Potentials (AP).  Each AP is fired by a cell as an all-or-

nothing response to stimuli external to the cell.  The behavior of an AP is generally 

independent of the magnitude of the stimuli which caused it.  A couple of examples 

of excitable cells found in mammals include those found in cardiac tissue and 

neurons. 

Over the course of the past century, various mathematical models have been 

introduced as representations for various types of excitable cells.  These models often 

make use of complex differential equations, rendering efficient simulations based 

directly off of the models very difficult.  In [1], we proposed a Hybrid Automata 

(HA) representation for these mathematical models which separated the phases of 

each AP into states and associated linear differential equations with each state for the 

behavior of the variables while the cell is in that state.  We experienced a significant 

improvement in simulation time due to the relative simplicity of the linear differential 

equations with respect to the complex equations found in the original models. 

Each HA consists of a series of states where each state contains a set of associated 

differential equations that control how the variables change with time while the HA is 

in that particular state.  These states can have transitions to other states that occur 

whenever the transition’s guard conditions are met.  Each state may also have 

invariant conditions, although in our HA models we ensure that each state’s 

invariants are always met by assigning the appropriate guards to each of the state’s 

transitions.  Fig. 1.1.1 shows an example of a Hybrid Automata, which in particular is 

a representation of the Hodgkin-Huxley model. 

The HA shown in Fig. 1.1.1 only takes into consideration a single-cell model and 

does not consider the effect of neighboring cells such as the ones found in tissues of 

cells.  Section 1.2 discusses the principles behind a simple HA-based implementation 

of a simulator for a tissue of excitable cells.  By observing that the excitable cells are 

non-responsive to external stimulation in the upstroke and plateau & ER states, we 



  

can develop an event-driven model, discussed in section 1.3, which is capable of 

obtaining a speedup factor of more than 5 with respect to the simpler HA-based 

implementation.  The remainder of this paper will cover information and usage 

instructions for our C implementations of these simulators. 

 
Fig 1.1.1. The HA representation for the Hodgkin-Huxley model 

 

1.2. A Time-step Integration Implementation 

The process of transforming our single-cell HA model specifications into code is 

fairly trivial.  We only need to update our variables using time-step integration in 

accordance with the current state’s associated differential equations and check the 

guards to determine when a transition is required.  The implementation of our 

diffusion models is more complex because we must to take into account the effect of 

neighboring cells on  a particular cell’s voltage and we need to determine when these 

changes coupled with externally applied stimuli constitute a stimulation event.  As 

previously mentioned, we make the assumption that these factors play a negligible 

role during the upstroke and plateau & ER states and we will only concern ourselves 

with them during the resting & FR and stimulated states. 



  

To obtain the updated values for the variables vx, vy, and vz associated with a cell 

in the resting & FR and stimulated states, we first calculate the sum of all currents 

involved and use it to determine the cell’s target voltage.  The three sources of current 

include current generated by voltage changes in neighboring cells, current applied to 

the cell from an external source, and the current caused by changes in the cell’s 

voltage.  We may then use the equation I = Cm * dV/dt to compute the required 

voltage change from this current and with that we can find new values for vx, vy, and 

vz such that they correspond to the new target voltage.  We conclude the updates for 

these variables by applying time-step integration wherever it is dictated by the 

appropriate HA model specification. 

We use the Laplacian operator to calculate the amount of current caused by the 

potential difference between a given cell and each of its neighbors.  Applying this 

operator yields the sum of the differences between a particular cell and each one of its 

neighbors divided by the distance between cells squared.  We next multiply by the 

diffusion coefficient of our tissue and by the membrane capacitance Cm to obtain the 

resulting current.  No additional computation is required for the contribution of 

external stimuli to the total current since its amount, duration, and location are given 

as parameters to the simulation.  The current generated by the cell’s voltage change 

may also be obtained from the equation I = Cm * dV/dt. 

In the two remaining states, upstroke and plateau & ER, we only need to update 

the variables by performing time-step integration.  In the next section we will provide 

a simple simulation algorithm for our HA diffusion models.  An important 

observation is that for each of our HA models we can determine both the initial and 

final voltages for the upstroke and plateau & ER states at the time which the state is 

entered.  We will explore this fact in greater detail when we present our idea for an 

event-driven model in section 1.3. 

 

1.2.1. A Simple HA Diffusion Model Implementation 

A straightforward implementation of our HA diffusion model involves 

computing the necessary updates for each cell for each time-step for the duration 



  

of the simulation.  We start out by initializing all of our cell variables to reflect 

the resting potential and set our timer to the start time of our simulation.  During 

each time-step, we check to see if an external stimulus is being applied and update 

that component of the current accordingly for all affected cells.  We proceed to 

update each variable for every cell depending on the cell’s state in the manner 

previously described.  Finally, we increment the timer by one time-step, check to 

see if output to a file is required, and repeat this process until the timer exceeds 

the simulation finish time.  The C-like code displayed in Fig. 1.2.1 serves to 

provide a conceptual illustration of this procedure. 

 
 timer = start_time; 

 init_variables(); 

 while (timer < end_time) 

 { 

  check_for_external_stimulus(); 

  for (each cell in simulation) 

  { 

   if (cell.state == (RESTING or STIMULATED)) 

    update_voltage_from_currents(cell); 

   update_variables_from_HA_specification(cell);  

   check_for_STATE_TRANSITION();  

  } 

  timer += dt; 

  if (output_required(timer)) 

   OUTPUT_TO_FILE(); 

 } 

Fig 1.2.1. Straightforward algorithm for simulating HA diffusion models 

 

1.3. An Event Driven Implementation 

We can greatly enhance the performance of our HA models by taking advantage 

of our ability to determine exactly how cells in the upstroke and plateau & ER states 

will behave at all times as soon as either one of these states is entered.  Given the 

linear form of our differential equations, our assumption that neighboring cells and 



  

external voltages do not play a role in these states, and our knowledge of the values of 

a cell’s variables upon entry into a particular state, we can easily construct explicit 

equations for each of the variables that take the current time as their only parameters.  

We may then use these equations to both respond to queries made by neighboring 

cells (such as those in the resting & FR and stimulated states) and to determine the 

time at which a transition to the next state will be required.  The latter use for these 

equations can be performed at runtime by using the Newton-Raphson and solving for 

the time at which the cell’s voltage will be equal to the transition voltage. 

Since we can readily generate explicit equations for our cell variables in two of 

our HA model states, it is evident that direct computation will not be required for 

cells in these two states during simulation.  By calculating the time that these cells 

will leave these states as soon as the states are entered, we may effectively ignore 

these cells until their next state changes are required.  When the time-step in our 

simulation is on the order of one microsecond, this can translate into a savings of tens 

of thousands of computation steps per cell in these states when compared to a 

simulation using traditional time-step integration.  In order to keep track of the next 

time that each cell requires processing, we propose an event-driven model in which 

we associate with each cell an event that signifies the type of action required and the 

time at which it should be performed.  We ensure that the correct ordering of events is 

maintained throughout the simulation by storing them on a priority queue that has 

been specifically designed to reduce overhead.   

In the next couple of sections, we will discuss in greater detail the implementation 

of such an event-driven HA model along with some techniques we can use to further 

improve simulation performance.  A discussion on the equivalency of our event-

driven implementation to the simple implementation presented in section 1.2.1 and 

performance guarantees of the event-driven model can be found in section 1.4. 

 

1.3.1. Types of Events 

We have chosen to classify the events that we use in our model by the type of 

processing that they require.   In a purely event-driven HA diffusion model, it is 



  

necessary to have five major types of events, namely the QUERY_NEIGHBOR, 

Update_State, BEGIN_STIMULATION, END_STIMULATION, and 

OUTPUT_TO_FILE events.   

The QUERY_NEIGHBOR event indicates that its associated cell should 

update its voltage based upon the amount of external stimulus it is receiving and 

the effects of its neighboring cells.  The way in which it performs these 

calculations is identical to that of our simple implementation.  A 

QUERY_NEIGHBOR event will continue to generate a new 

QUERY_NEIGHBOR event for the following time step until the upstroke state is 

reached.  When it becomes necessary for the cell to enter the upstroke state, we 

compute how long the cell will be in this new state and an Update_State event is 

for this calculated time.  

The Update_State event indicates the end of the upstroke and plateau states 

and is handled by performing an action dependent upon the new state of the cell.  

If this new state is the plateau & ER state, we will calculate its exit time and 

create another Update_State event as we did when we entered the upstroke state.  

Otherwise, if the new state is the resting & FR state, we will perform the 

transition to this state and create a new QUERY_NEIGHBOR event for the 

succeeding time step. 

The remaining three types of events help us to perform actions that are to be 

applied to the entire simulation as opposed to individual cells.  Since the times 

and locations of external stimuli are known to us at the beginning of the 

simulation, we can place special events on the queue that will notify us when they 

are supposed to begin or end.  For each cell, we may keep track of the amount of 

external stimulation being received at any point in time by accumulating these 

changes in an auxiliary cell variable.  The BEGIN_STIMULATION and 

END_STIMULATION events notify all affected cells when a change in this 

accumulator should occur.  Each cell will then either add or subtract the strength 

of the stimulus, depending on if the event is a BEGIN_STIMULATION or 

END_STIMULATION event, respectively.  The final event, 

OUTPUT_TO_FILE, simply writes the voltages of each cell to an output file and 



  

generates a new OUTPUT_TO_FILE event for a determined number of time steps 

into the future. 

 

1.3.2. Handling Regions with Low Activity 

In some simulations, it might be possible that large regions of our sample 

tissue might be at the resting potential for a significant number of time steps with 

no external stimulation.  Since the event-driven nature of our model makes it 

possible to avoid handling certain cells during a particular time step, as we do for 

cells in the upstroke and plateau & ER states, we may extend this idea so that we 

ignore cells completely at rest until we deem further processing necessary.  These 

cells can easily be “put to sleep” by not generating new QUERY_NEIGHBOR 

events for them once their voltage drops below a threshold that is sufficiently 

close to the resting potential.  In a fashion similar to how we use explicit 

equations to respond to queries made to cells in the upstroke and plateau & ER 

states, all queries made to sleeping cells will automatically return the resting 

potential. 

Once a cell is considered to be sleeping, there are two ways in which it may 

be awakened.  First, if the voltage of one of its neighboring cells rises above a 

threshold value, it will be that cell’s responsibility to notify all of its neighbors 

that they must wake up.  The second reason a cell should be awakened is if it is 

affected by an external stimulus through a BEGIN_STIMULATION event.  

Through this scheme we ensure that no cell remains asleep at a time that its 

voltage should be above the resting potential while obtaining the benefit of a 

substantial speedup from skipping over these cells for prolonged periods of time. 

 

1.3.3. Priority Queue Implementation 

Because we need to ensure that our events are always executed in the correct 

chronological order, it is necessary for us to use a priority queue data structure 

that keeps the events with the lowest times as the highest priority.  A standard 



  

min-heap is one of the most efficient known data structures for preserving this 

property.  Unfortunately, with insertions and removals costing O(log2 n) time for 

a min-heap of size n, the overhead cost of simply determining which event should 

be processed next can in some cases become greater than the time we save by 

using an event-driven model.  This problem is capable of rendering our event-

driven approach to be more harmful than good for certain simulation parameters. 

When we observe the behavior of our min-heap with respect to the types of 

events we place on it, it is notable that there are a large number of events that 

require processing at either the “current” time step (i.e., at the lowest time 

appearing on the priority queue) or the subsequent time step.  The vast majority of 

these events are QUERY_NEIGHBOR events because in handling this type of 

event the normal action is to create another event of the same type for a single 

time step into the future.  With a standard min-heap, a great amount of time is 

spent during the insertion of new QUERY_NEIGHBOR events by placing the 

new event at the bottom of the heap and swapping it up past all of the events that 

won’t need processing for several thousands of time steps.  A similar situation 

arises when we remove a QUERY_NEIGHBOR event from the top of the heap 

and perform a fix-heap operation.  Our solution is to separate the priority queue 

into two parts, where one part handles only QUERY_NEIGHBOR events and the 

other part handles every other type of event. 

Since each QUERY_NEIGHBOR event will either occur at the current time 

or the next time step, we can store a particular QUERY_NEIGHBOR event on 

one of two lists, where each list reflects one of the two possibilities for event 

times.  When the list for the current time is empty we can swap the two lists 

continue handling the events for the next time step.  The advantage of using lists 

as opposed to a min-heap in these situations is that insertion and removal on lists 

can be achieved in constant time.  For each type of event other than the 

QUERY_NEIGHBOR event, we still must use a min-heap to ensure that the 

ordering of the events is properly maintained.  Whenever we need to find the next 

event for our simulation, we can check to see if there are any events on the min-

heap that require processing for the current time.  If there are, we will obtain our 



  

next event from the min-heap; otherwise, we will continue to consume the events 

from the lists.  The process of selecting from which data structure we should 

obtain the next event can also be performed in constant time. 

By using this implementation we can significantly reduce the overhead caused 

by our need to maintain an accurate ordering of events.  In section 1.4.1.1 we will 

argue that, by using this type of priority queue instead of a standard min-heap, we 

can guarantee that for any reasonable simulation our event-driven model will 

perform no worse than the simple time-step integration model we presented in 

section 1.2.1. 

 

1.3.4. Initialization and Simulation Loop 

The initialization phase for our event-driven model requires that we set the 

voltages of each cell to the resting potential and place the necessary events onto 

the priority queue.  Because all cells are initially at the resting potential, we may 

assume that they are all asleep and thus we will not need any 

QUERY_NEIGHBOR or Update_State events on the queue at this time.  We next 

generate the appropriate BEGIN_STIMULATION and END_STIMULATION 

events by using the information about the times and locations of external stimuli 

provided by the simulation parameters.  The last event we place on the initial 

queue is an OUTPUT_TO_FILE event for the time at which the set of output data 

will be required.  At this time we set our timer equal to the start of the simulation, 

delete all events that occur before the start of simulation, and begin the execution 

of the main simulation loop. 

Instead of incrementing our timer by a single time step after each iteration of 

the simulation loop, as we did with our simple model in Sect. 3.1, we advance the 

time in our event-driven model by setting the timer to the time at which the next 

event on the queue requires processing.  We take this event off of the queue, 

handle it according to what type of event it is, and repeat this process until the 

time of the next event on the queue exceeds the simulation’s finish time.  Once we 

have reached a time greater than the finish time we may terminate the simulation. 



  

The following C-like code in Fig. 1.3.1 provides a high-level description how 

to carry out an event-driven simulation.  Fig. 1.3.2 illustrates a snapshot in time of 

a hypothetical situation that might arise during a simulation using our event-

driven model. 

 
 timer = start_time; 

 while (queue.peek_next_event_time() < timer) 

  queue.dequeue(); 

 timer = queue.peek_next_event_time(); 

 

 init_variables(); 

 add_stimulation_events_to_queue(); 

 add_output_event_to_queue(); 

 

 while (timer < end_time) 

 { 

  event = queue.dequeue(); 

  handle_event(event); 

  timer = queue.peek_next_event_time(); 

 } 

 

Fig 1.3.1. Event-Driven algorithm for simulating HA diffusion models 

 

 



  

 
 
Fig 1.3.2. Simulation Snapshot using the Event-Driven Model 

 
 
The diagram above depicts a hypothetical situation that might arise when a wave is propagating from left to 
right.  The actual implementation of our Event Queue is significantly more complex than shown in this 
conceptual diagram.  The Event Handler always takes the first event in the queue along with any associated 
cell(s) as input and can produce a new event and update cell variables as output.  The event being processed 
above is a Query Neighbors event for cell #2 at time = 1.000 ms.  The Simulation Manager takes this event 
off of the queue, updates the appropriate cell #2 variables, determines that cell #2 should remain in the 
resting state, and produces a new QUERY_NEIGHBOR event for cell #2 for time = 1.001 ms that gets 
placed into the appropriate position on the queue. 
 

1.4. Comparison of Simulators 

 In the following sections we will defend our claim that our event-driven 

model presented in section 1.3 is in fact superior to the simple time-step integration 

model discussed in section 1.2.1.  We will first prove that our event-driven model 

produces the same results as the time-step integration model does.  We will then 
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argue that for all reasonably-sized simulations the event-driven model will 

outperform the simpler model.  

 

1.4.1. Equivalence of Models 

Careful analysis of our event-driven model will show that our model is 

actually performing all of the same necessary actions as the time-step integration 

model; the only difference between the two is that our event-driven model skips 

over certain actions that may be accomplished through more efficient means.  The 

three significant differences between the two models are how we determine the 

time at which upstroke to plateau & ER and plateau & ER to resting & FR 

transitions occur, how we respond to queries about a cell’s voltage during the 

upstroke and plateau & ER states, and how we handle cells that are at the resting 

potential.  We will show that these three differences between the two models do 

not affect the results and as a consequence the system will have the same behavior 

for each of the states regardless of which model we use. 

The first column of the following table summarizes how each model handles 

cells in each type of situations, namely cells at resting potential, cells above 

resting potential in the resting & FR and stimulated states, and cells in the 

upstroke and plateau & ER states.  The second column lists the possible sources 

for error associated with the approach each model takes. 

Model and Situation  Required Cell Processing Associated Error 
Resting Potential   
Time-step Integration  -Handle cells as if they were -No error with respect to a 
    any other cell in the Resting   diffusion model where only 
    & FR state   neighboring cells affect 
    -Performing normal cell voltage 
    updates will result in this  
    cell remaining at resting  
    potential 
Event-Driven   -Leave cells off of the queue -No error with respect to a 
    until a change occurs in a diffusion model where only 
    neighboring cell or if an neighboring cells affect 
    external stimulus is applied voltage 
    -Respond to queries by  
    returning resting potential 
 



  

Resting & FR/Stimulated 
Time-step Integration   -Update cell variables and  -Approximation error caused  
    check the affects of   by using time-step integration 

neighbors and external instead of using explicit 
stimuli    solutions to differential 
-Respond to queries by equations 
returning the cell’s voltage  -Truncation of state transition 
from the previous time step time to nearest whole time 

step 
Event-Driven   -Generate an event every  -Approximation error caused 
    time step that performs the by using time-step integration 
    same updates for the cell as instead of using explicit 
    with the TSI model  solutions to differential  

-Respond to queries by  equations 
returning the cell’s voltage -Truncation of state transition 
from the previous time step time to nearest whole time  

step 
Upstroke/Plateau & ER 
Time-step Integration   -Update cell variables  -Approximation error caused 
    based solely upon   by using time-step integration 

differential equations  instead of using explicit 
using time-step integration solutions to differential  
-Respond to queries by  equations 
returning the cell’s voltage  -Truncation of state transition 
from the previous time step  time to nearest whole time  

step 
Event-Driven   -Solve for explicit solution -No error with respect to 

of differential equations and using explicit solutions to 
use Newton-Raphson to  differential equations 
calculate the next transition -Truncation of state transition 
time time to nearest whole time 
-Respond to queries by  step 

    evaluating explicit equations  
    for the time of the previous  
    time step 
 

From this table, it is evident that in all situations our event-driven model either 

has the same error associated with a time-step integration model or no error at all 

with respect to the actual solutions for our differential equations.  We will 

conclude this discussion with an elaboration on why in our event-driven model 

sleeping cells will never fail to be awakened at times when their voltages should 

be above resting potential and why we may always compute the time a cell will 



  

leave the upstroke or plateau & ER states to an accuracy within the nearest time 

step. 

 

1.4.1.1. Determining the Appropriate Time for Awakening 

Sleeping Cells  

In the case where we have cells remaining at resting potential for 

prolonged periods of time in the simpler model, the cells in these regions are 

effectively doing nothing other than keeping all of their variables unchanged.  

In the event-driven model, by putting cells to sleep, we are actually 

performing the exact same action.  The only concern is that our event-driven 

could potentially fail to immediately awaken cells as soon as their voltages 

should begin to change.  To prove that this will not be an issue, we will look 

back to our discussion in section 1.2 on the three types of current that induce 

changes in voltage and show that the event-driven model correctly handles 

each type of current. 

There is no change in the voltages of cells at resting potential because they 

will remain at this potential until they are otherwise stimulated, meaning the 

current caused by voltage change should have no effect on sleeping cells.  

When there is an external stimulus applied to a cell at resting potential, it 

should begin taking this into consideration and resume querying its neighbors 

and checking to see if a state change is necessary.  This action is reflected in 

our event-driven model by making a BEGIN_STIMULATION event force 

each sleeping cell that it affects to wake up and begin generating new 

QUERY_NEIGHBOR events.  The final source of current, caused by 

potential differences between neighbors, takes time to propagate in the time-

step integration model.  This is due to the fact that differences in voltage can 

only affect a cell’s immediate neighbors during a single time step.  Our event-

driven model captures this notion by obligating any cell noticing a voltage 

increase above a threshold at which neighbors may be affected to notify its 

sleeping neighbors that they should awaken and begin generating 



  

QUERY_NEIGHBOR events for the next time step.  Because all of the 

currents are correctly taken into account at all times, our event-driven model 

will produce the same results for cells at resting potentials while doing 

significantly less work when compared time-step integration models, 

including models that make use of adaptive time steps. 

 

1.4.1.2. Accurately Computing Transition Times Using 

Explicit Equations 

Since the differential equations for cell variables in the upstroke and 

plateau & ER states are linear, they each have a general solution in the form 

of an exponential equation ce(α(t-t
0

), where α is the coefficient from the linear 

differential equation, t0 is the time at which the state was entered, and c is the 

value of the variable upon entry into the state.   When the voltage of a cell is 

defined as the sum of these cell variables, as it is the case with our HA model 

specifications, the explicit equation for the voltage in these states is the sum of 

equations of this general form.   

Because we already know the value of the voltage that will trigger a state 

transition from the HA model specification, we may set this equation equal to 

this value and solve for t, the only unknown, to find the time at which the 

transition will occur.  We may use the Newton-Raphson method to obtain a 

value for t which is guaranteed to be within a desired accuracy, which in our 

case will be to the nearest full time step.  Once we know the value of t, we 

may use the explicit equations for each cell variable to determine their values 

for the time at which the state will be exited. 

The only source of error in these transition times will be due to the 

truncation of all event times to the nearest whole time step.  A similar problem 

is present while using time-step integration techniques because all updates are 

performed on whole number time steps and there are no means to handle 

transitions at times in between time steps.  Thus, our calculation of the state 



  

transition time in the event-driven model will no less accurate than a transition 

time obtained from the simpler model.   

 

1.4.2. Performance Guarantees 

At first glance, one might think that the use of a priority-queue in our event-

driven model could potentially be the source of enough overhead to negate the 

amount of computation time saved by using explicit equations for cells in the 

upstroke and plateau & ER states.  However, when we use the specialized priority 

queue introduced in section 1.3.3, we can prove that our event-driven model will 

not be outperformed by a time-step integration model by more than a small 

constant factor for any reasonable simulation.  We define a reasonable simulation 

to be any simulation containing a small enough number of cells such that all of 

the cell variables may be stored in the memory system of a modern computer. 

To carry out our performance analysis, we must first define a basic unit of 

work.  One logical choice would be the amount of work required to update a singe 

cell’s variables during a single time step in a standard time-step integration 

model.  To help simplify our proof, we will also assume that the amount of time it 

takes to swap an element up or down by one level in a fix-heap operation is also 

equal to a single unit of work.  This assumption is a conservative one because the 

amount of work done in calculating new cell variable values is significantly more 

than that performed in a single fix-heap swap operation; by allowing this 

simplification we are actually overestimating the amount of overhead caused by 

our queue. 

We compare the amount of work per cell per time step required for each 

situation in each model in terms of this defined unit of work in Table 1.4.1.  In 

addition to the time-step integration and event-driven models we will also 

consider an adaptive time-step model, which is a modified version of the time-

step integration model in which the computation for cells at resting potential is 

skipped for a predetermined number of time steps.  Table 1.4.2 lists typical values 

for some of the variables introduced in Table 1.4.1. 

 



  

(Table 1.4.1) 
Model  Resting Potential Resting & FR/Stimulated Upstroke/Plateau 
TSIM   1   1    1 
ATSIM  α   1    1 
EDM   0   1 + β   ((log2 n) + c)/s 
 

(Table 1.4.2) 
Variable α  β  c  n  s 
Value   0< α <1 0< β <1 0 < c < 20 Varies  > 1000* 

*- typical value when assuming a time-step on the order of one microsecond. 
 

The variable α represents the amount of work required to determine that a cell 

should be skipped over for a time-step while β represents the amount of overhead 

required to remove the next QUERY_NEIGHBOR event from a linked list.  The 

variable c indicates the amount of processing a cell requires for computing its 

transition time using Newton-Raphson and s is the minimum number of time steps 

spent in any state that makes use of explicit equations, to be conservative.  The 

final variable n is the maximum number of events that may be on the min-heap 

part of the queue at any given time.  We will discuss in greater detail the 

derivation of the expression ((log2 n) + c)/s in section 1.4.2.1 after arguing that in 

any realistic simulation setting its value will be no greater than one. 

Solving for the minimum number of events that must be on the queue to 

require more than a single unit of work per cell per time step yields the expression 

n = 2(s-c).  It is evident from the typical values of s and c that we would need to 

have a much larger number of events than we could possibly store in memory in 

order to have the event-driven model perform worse than the other two models in 

the upstroke and plateau & ER states.  It thus follows from Table 1.4.1 that in an 

absolute worst-case scenario our event-driven model will not perform worse than 

the other two models by any more than a factor of 1 + β because for all reasonable 

simulations the other two models are at best capable of outperforming the event-

driven model in one type of situation by this factor. 



  

1.4.2.1. Complexity Analysis for Overhead Caused By Min-

Heap 

Because it is difficult to directly assess how much overhead a single event 

on the min-heap component of our queue generates per time step, we will 

instead investigate the amount of overhead a cell is responsible for throughout 

the duration of time it spends on the min-heap.  Supposing that we have O(n) 

events on the min-heap at any particular time, it is reasonable to assume that 

while an event is on the min-heap we will have O(n) insert and remove 

operations performed (likely one insertion and one removal for each other 

event).  Because each of these operations requires O(log2 n) units of work to 

complete, the total amount of work done while an event is on the min-heap 

will be  

O(n log2 n) units.  We can use the amortized argument that each cell is 

thus responsible for O(log2 n) of these units because each associated event on 

the min-heap contributes equally to the total overhead. 

For the entire time a cell spends in either the upstroke state or plateau & 

ER state, the total amount of work required will be the sum of c, the number 

of units required to compute the exit time from the state, and the amount of 

queue overhead, which we have computed to be O(log2 n).  To determine how 

much upkeep is required per time step for this cell, we divide the amount of 

total work by s, the number of time steps that the cell spends in this state.  

Using this information, we may define an expression for the units of work 

needed per cell per time step to be (O(log2 n)+c)/s for the upstroke and plateau 

& ER states.  

 

1.5. Simulation Results 

We compared the time required to produce a complete spiral, from the second 

stimulus time onwards, with a time-step integration simulator and with an event-

driven simulator for a 400-x-400 array of EHAs for the Luo-Rudy nonlinear model. 

The event-driven simulator completed the 500 ms simulation in 1.70 hours as 



  

opposed to 9.05 hours for the time-step integration simulator,  showing more than a 

five-fold speedup for the event-driven simulator. 

We also ran simulations in which we applied a stimulus to the corner of different-

sized EHA arrays.  The simulations ran until the last EHA returned to the resting 

state.  The timing results for both simulators resulted in an average speedup of 1.25 

for the event-driven simulator.  This is an example of a simulation in which one might 

expect the event-driven simulator to not achieve top performance due to the large 

number of cells in non-refractory states. 

2. Simulator Features 

2.1. Individual Cell Reports 

Both simulators provide a feature for producing output reports for specified cells 

during the course of the simulation.  At every standard output interval, an individual 

cell report will include the simulation time and voltage value for the specified cell.   

Each two column report file can then be imported by plotting software, such as 

MATLAB, so that the morphology of each of the cell’s action potentials can be 

viewed graphically.  The cells for which the reports are generated and the filenames 

of the cell reports are specified by the cell report input file (see sections 3.3.2.1.3 and 

3.3.2.2.3). 

 

2.2. Graphical Simulation Snapshots 

Both simulators have functionality included for producing graphical snapshots of 

the simulation to show wave propagation.  The output files show the cell grid colored 

by the state of each cell (white for upstroke, gray for plateau, and black for resting 

and stimulated) in .ppm format.  These graphical files are produced at regular 

intervals (see section 3.3.4) and can be viewed with programs such as Irfan View and 

Advanced Batch Converter. 

 



  

2.3. Customizable HA Parameters 

It is possible for each simulator to change the values of HA constants such as the 

coefficients for the differential equations, the voltage values for each transition, and 

the resting potential.  This can be done by specifying an input file containing this 

information through a command-line argument (see sections 3.3.2.1.2 and 3.3.2.2.2).  

The user also has the option of using the default values for these parameters by not 

providing an HA specification file. 

 

2.4. Load/Save Simulation State Functionality (Event 
Driven Simulator) 

The event-driven simulator includes a mechanism for saving and loading 

simulation states.  The saving state feature allows for state files to be created at times 

specified by a state saving information file (see section 0).  The loading state feature 

allows one of these state files to be loaded along with a new stimulus input file.  The 

benefit of this feature is that simulations can be resumed from specified points with 

different stimuli, eliminating the need to repeat the earlier part of the simulation. 

 

3. Simulator Instruction Manual 

3.1. Environment Information 

Both simulators were originally developed on the UNIX compserv1.cs.sunysb.edu 

using the standard gcc compiler with the –lm commands enabled (for using math 

commands).  The simulators were later ported to a standard Windows machine using 

a free C/C++ development environment called Dev-C++ which can be downloaded 

from www.bloodshed.net. 

The reason for porting the simulators to the Windows machine was to obtain 

accurate simulation timing results.  The compserv1.cs.sunysb.edu machine is a shared 

user machine, so the timing results tended to vary greatly from one run to another as 

the result of the other users’ activity.  Running simulations on a dedicated, single-user 

machine is the only way to guarantee accurate timing results. 



  

There are a few subtleties between the two compilers involving the constant 

definitions of true, false, and null (Dev-C++ has these predefined while gcc does not).  

The code in its current state is configured to run with Dev-C++. 

 

3.2. Setup Procedures 

All code files for each simulator must be placed in the same directory before the 

compiler is run.  All filenames used in the simulators are relative to the directory 

containing the executable files.  The executable file assumes that the input file is 

called testdata.txt and is located in this directory unless a command-line parameter 

specifies otherwise.  The output file will be placed in this directory and will be named 

AP.dat unless a command-line parameter specifies otherwise.  The log file with the 

timing results will be placed in this directory and will be named log.txt unless a 

command-line parameter specifies otherwise. 

 

3.3. Simulation Input and Usage 

Both simulators share a common framework for usage and how input information 

is collected.  Command-line parameters are used to specify which input files are 

going to be used and the file paths that they correspond to.  Input files provide 

information to the simulators such as the general simulation parameters, the stimulus 

information, the HA specification constants, the list of cells to generate reports for, 

and a list of times to create saved state files (for the event-driven simulator).  

Preprocessor options allow certain features to be compiled out of the simulators to 

reduce overhead during simulation timing runs.  Both simulators contain a built-in 

mechanism for producing graphical snapshots of the simulation at regular intervals. 

The next sections detail how each part of this framework can be used to customize 

the simulation to meet the needs of a particular experiment.  Examples are provided 

to ensure the clarity of the usage descriptions. 

 



  

3.3.1. Command-Line Parameters 

Command-line parameters are provided to the simulators at runtime and 

consist of a parameter identifier followed by a parameter target.  A parameter 

identifier consists of a hyphen followed by one or two letters, such as ‘-sf’ or ‘-a’, 

which signifies the option that the following target belongs to.  The parameter 

target is usually the name of a file path that can be at most 40 characters in length.  

Any number of command-line options may be selected by listing the identifiers 

and targets one after another.  The following example shows three options 

selected along with three target paths specified: 

 
“-i Input\input.txt –o Output\output.txt –r Input\reportFile.txt” 

 

The following is a list of all of the command-line parameters that can be 

passed to the simulators.  With the exception of the ‘-sf’ and ‘-sl’ identifiers, 

which are particular to the event-driven simulator, each command-line parameter 

may be used for event-driven and time-step integration simulators. 

 

• -a <target>:  Indicates that the HA specification constants are to 

be read from an input file found at location target.  See sections 

3.3.2.1.2 and 3.3.2.2.2 for the format of these files.  Omitting this 

parameter will use the default values for all HA constants. 

 

• -i <target>:  Indicates that the location of the general parameter 

and stimulus file will be target instead of testdata.txt.  Omitting 

this parameter will use the file located at testdata.txt. 

 

• -o <target>:  Indicates that the location of the output file will be 

target instead of AP.dat.  Omitting this parameter will use the 

file located at AP.dat. 

 



  

• -l <target>:  Indicates that the location of the log file (with 

simulation timing results) will be target instead of log.txt.  

Omitting this parameter will use the file located at log.txt. 

 

• -r <target>:  Indicates that individual cell reports will be 

generated based upon the individual cell report file located at 

target.  The cell report preprocessor option must be turned on 

for the reports to be generated (see section 3.3.3). See sections 

3.3.2.1.3 and 3.3.2.2.3 for the format of these files.  Omitting this 

parameter will result in no cell reports being generated. 

 

• -sf <target>:  Indicates that save state files will be generated for 

the event-driven simulator.  The file containing information about 

the times at which these files should be created is located at 

target.  See section 2.4 0 for the format of this file.  Omitting 

this parameter will result in no saved states being created. 

 

• -sl <target>:  Indicates that simulation will be started for the 

event-driven simulator from the state represented by the saved 

state file located at target.  Omitting this parameter will result in 

the simulation starting at the specified start time with all cells at 

resting potential. 

 

3.3.2. Input File Format 

3.3.2.1. Event Driven Simulator 

The event-driven simulator can accept up to four different types of input 

files to be used during a simulation.  The following sections describe in detail 

the formats of these files. 

 



  

3.3.2.1.1. General Parameter and Stimulus File 

The General Parameter and Stimulus File provides all of the basic 

information to the event-driven simulator about simulation parameters and 

each stimulus.  The general format of this input file is as follows: 

 
<sz> <sti> <dd> <C> <dif> <st> <end> <dt> <out> 

<begin> <en> <up> <low> <left> <right> <stren> 

(Repeat Last Line for Each Stimulus) 

 

The abbreviations listed above represent the following information: 

• sz: The size of the simulation grid.  A value of n indicates that the 

simulation will use an n x n grid. 

• sti: The number of stimuli to be used in the simulation.  This 

number represents the number of lines that will follow the first 

one in the input file, with each representing a different stimulus. 

• dd: The physical distance between two neighboring cells. 

• C: The membrane capacitance of the cell. 

• diff: The diffusion coefficient for the simulation. 

• st: The starting time of the simulation, given in milliseconds. 

• end: The finish time of the simulation, given in milliseconds. 

• dt: The size of the simulation time-step, given in milliseconds. 

• out: The number of iterations (time steps) between each voltage 

dump to the main output file.  The output interval is effectively 

dt * out in milliseconds. 

• begin: The start time of the stimulus, given in milliseconds. 

• en: The end time of the stimulus, given in milliseconds. 

• up: The upper coordinate of the stimulus bounding box, with 

lower numbered coordinates being further upward. 

• low: The lower coordinate of the stimulus bounding box, with 

higher numbered coordinates being further downward. 



  

• left: The left coordinate of the stimulus bounding box, with 

lower numbered coordinates being further left. 

• right: The right coordinate of the stimulus bounding box, with 

higher numbered coordinates being further right. 

• stren: The strength of the stimulus, given in amps. 

 

The following is a sample General and Stimulus File with three 

different stimuli: 

 
100 3 0.2 1 0.4 0 100 0.001 1000 

0 1 0 19 0 19 -0.60 

60 61 80 99 80 99 -0.60 

30 31 40 59 40 59 -0.60 

 

The above input file specifies a simulation that lasts 100 milliseconds 

with a single microsecond time-step.  Output occurs at the end of every 

simulation millisecond.  Each of the three stimuli lasts for a single 

millisecond and occurs at a different time and in a different region of the 

100 by 100 simulation grid. 

 

3.3.2.1.2. Hybrid Automata Specification File 

The Hybrid Automat Specification File provides a mechanism for 

overriding the event-driven simulator constants that normally describe 

various coefficients of the corresponding hybrid automata.  The general 

format of this input file is as follows: 

 
<ax0> <ay0> <az0> 

<ay1> <az1> 

<ax2> <ay2> <az2> 

<ax3> <ay3> <az3> 



  

<vO> <vT> <vS> <vR> <vW> <rp> 

<initVx> <initVy> <initVz> 

<guessUpstroke> <guessPlateau> 

 
The abbreviations listed above represent the following information: 

• <a<cur><st>>: The coefficient for the differential equation in 

state st for the voltage designated by the letter cur (x, y, or z). 

• <vO>: The overshoot potential given in millivolts above resting 

potential. 

• <vT>: The threshold potential (for starting an upstroke) given in 

millivolts above resting potential. 

• <vS>: The stimulus potential (for detecting a stimulus event) 

given in millivolts above resting potential. 

• <vR>: The repolarization potential (for the end of the absolute 

refractory period) given in millivolts above resting potential. 

• <vW>: The potential for waking cells and putting them to sleep 

given in volts. 

• <rp>: The resting potential given in volts. 

• <initV<cur>>: The initial value for the voltage designated by 

the letter cur (x, y, or z), given in millivolts above resting 

potential. 

• <guessUpstroke>: The estimated length of the upstroke phase 

in milliseconds used to assist Newton’s method. 

• <guessPlateau>: The estimated length of the plateau phase in 

milliseconds used to assist Newton’s method. 

 

The following is a sample Hybrid Automat Specification File for the 

event-driven simulator with parameters equal to the system defaults (the 

NNR model): 

 

 



  

-0.025 -0.07 –0.2 

-0.07 -0.2 

250 200 125 

-0.025 -0.07 –0.2 

120.0 30.0 0.0005 20.0 -0.0799 -0.08 

0 0 0 

0.01 78.2 

 

3.3.2.1.3. Individual Cell Report Information File 

The Individual Cell Report Information File specifies which cells 

should have their voltages reported (for plotting purposes) and what the 

corresponding report file name should be.  The general format of this input 

file is as follows: 

 
<reportCount> 

<cellX> <cellY>  //Repeat these two lines  

<filename>   //for each cell reported 

 

The abbreviations listed above represent the following information: 

• <reportCount>: The number of cells that will generate reports.  

The number of lines following this one will be equal to 2 * 

reportCount. 

• <cellX>: The x coordinate of the cell being reported in the file 

specified by the following line. 

• <cellY>: The y coordinate of the cell being reported in the file 

specified by the following line. 

• <filename>: The file name of the report corresponding to the 

cell listed on the previous line. 

 



  

It is important to note that this feature will only work if the 

CELL_REPORTS_ON preprocessor directive is enabled (see section 

3.3.3).  Also, if the cell coordinates are out of bounds for one of the 

entries, no report will be generated for that cell. 

The following is a sample Hybrid Individual Cell Report Information 

File for the event-driven simulator: 

 
4 

0 1 

cell0001.dat 

10 10 

cell1010.dat 

8 7 

cell0807.dat 

-1 4 

invalid.dat 

 
The previous example lists 4 different cell report specifications.  

However, only 3 are valid (assuming a grid size of greater than 10) 

because -1 is out of range.  Reports for (0,1), (10,10), and (8,7) are created 

and stored in the files cell0001.dat, cell1010.dat, and cell0807.dat, 

respectively. 

 

3.3.2.1.4. State Saving Information File 

The State Saving Information File specifies at which times the event-

driven model should dump its state to a file and the file name that each 

dump time corresponds to.  The general format of this input file is as 

follows: 
<stateCount> 

<dumpTime>   //Repeat these two lines  

<filename>   //for each state dumped  



  

The abbreviations listed above represent the following information: 

• <stateCount>: The number of states to be saved.  The number 

of lines following this one will be equal to 2 * stateCount. 

• <dumpTime>: The simulation time, in milliseconds, at which the 

state should be dumped to the file specified by the following line. 

• <filename>: The saved state file corresponding to the dump 

time specified by the previous line. 

 

It is important to note that if the dump time is out of the simulation 

time bounds for one of the entries, no saved state file will be generated for 

that dump time. 

The following is a sample State Saving Information File for the event-

driven simulator: 
 

3 

1.0 

state1.dat 

2.0 

state2.dat 

-1.0 

invalid.dat 

 
The previous example lists 3 different saved state specifications.  

However, only 2 are valid (assuming a simulation start time of 0.0 and end 

time greater than 2.0) because -1.0 is out of range.  Saved states for times 

1.0 and 2.0 milliseconds are created and stored in the files state1.dat and 

state2.dat, respectively. 

 



  

3.3.2.1.5. Saved State File 

While Saved State Files are generally generated by the event-driven 

simulator, it might be useful at times to manually alter the starting state for 

simulations by modifying this type of file.  The general format is 

described by the following grammar in BNF-like notation followed by a 

more detailed description of cell_info and event_info: 

 
<saved_file> :=  <cell_part> 

    <queue_part> 

<cell_part> :=  (#_of_cells) 

    <cell_info> //Cell (0,0) 

    <cell_info> //Cell (0,1) 

       ...  //Repeat 

<queue_part> := <list_part> //Now List 

    <list_part> //Later List 

    <heap_part>  

<list_part> :=  (capacity) (size) (list_time) 

    <event_info> //1st event 

    <event_info> //2nd event 

       ...  //Repeat 

<heap_part> :=  (capacity) (size)   

    //Heap in Array Notation 

<event_info> //1st event 

    <event_info> //2nd event 

       ...  //Repeat 

 

The token cell_info represents the state information for a particular 

cell.  It consists of the following 18 fields on a single line, each separated by a 

single space, in the order shown below: 

 

 



  

• State code of the cell 

• X position of the cell 

• Y position of the cell 

• The last time-step’s value of Vx 

• The current time-step’s value of Vx 

• The last time-step’s value of Vy 

• The current time-step’s value of Vy 

• The last time-step’s value of Vz 

• The current time-step’s value of Vz 

• The last time-step’s value of V 

• The current time-step’s value of V 

• The value of Vn 

• The last time-step’s time 

• The current time-step’s time 

• The value of time_enter (used in upstroke and plateau states) 

• The value of time_exit (used in upstroke and plateau states) 

• The amount of applied stimulus (in A) 

• A flag for whether or not the cell is awake 

 

The token event_info represents the state information for a particular 

event.  It consists of the following 4 fields on a single line, each separated by a 

single space, in the order shown below: 

 

• X position of the affected cell 

• Y position of the affected cell 

• The type code of the event 

• The time of the event 
 

 



  

3.3.2.2. Time-step Integration Simulator 

The time-step integration simulator can accept the same types of input 

files as the event-driven simulator with the exceptions of the state saving 

information file and the saved state file.  The following sections describe in 

detail the formats of these files by describing how they differ from the file 

formats in the event-driven model. 

 

3.3.2.2.1. General Parameter and Stimulus File 

The General Parameter and Stimulus File for the time-step integration 

simulator is effectively the same as that for the event-driven simulator 

with a couple of additional restrictions.  The list of stimuli must be listed 

in chronological order in the input file to avoid skipping over certain 

stimuli.  The time-step integration simulator also is not capable of 

handling two different stimuli at the same time.  These restrictions are not 

placed upon the event-driven model because it is powerful enough to 

handle these cases without the more sophisticated (and time-consuming) 

logic that the time-step integration model would require. 

 

3.3.2.2.2. Hybrid Automata Specification File 

The Hybrid Automat Specification File for the time-step integration 

simulator is similar to the one for the event-driven simulator with the 

omission of several parameters.  The general format of this input file is as 

follows: 
<ax0> <ay0> <az0> 

<ay1> <az1> 

<ax2> <ay2> <az2> 

<ax3> <ay3> <az3> 

<vO> <vT> <vS> <vR> <rp> 

<initVx> <initVy> <initVz> 



  

 
The abbreviations listed above have the same meanings as those listed 

in section 3.3.2.1.2.  The upstroke and plateau phase length 

approximations are not required because the time-step integration 

simulator does not use Newton’s method.  The parameter vW is also not 

required because the time-step integration simulator does not put cells to 

sleep. 

The following is a sample Hybrid Automat Specification File for the 

time-step integration simulator with parameters equal to the system 

defaults (the NNR model): 

 
-0.025 -0.07 –0.2 

-0.07 -0.2 

250 200 125 

-0.025 -0.07 –0.2 

120.0 30.0 0.0005 20.0 -0.08 

0 0 0 

 

3.3.2.2.3. Individual Cell Report Information File 

The Individual Cell Report Information File format for the time-step 

integration simulator is identical to that of the event-driven simulator.  See 

section 3.3.2.1.3 for more details. 

3.3.3. Preprocessor Options 

Since the simulation runs for producing timing results require optimal 

performance, it is possible to toggle compile time flags for both simulators to 

disable additional functionality not required for such runs (individual cell reports, 

graphical output, etc.). 

The following list describes all features that may be enabled or disabled and 

details which source files they may be found in: 

 



  

• STATE_SNAPSHOTS_ENABLED:  This enables (1) or disables (0) 

whether or not graphical output will be produced by the simulators.  

This constant is located in the main.c file of both simulators. 

 

• ALLOW_CELLS_TO_SLEEP:  This enables (1) or disables (0) whether 

or not the event-driven simulator puts cells at resting potential to sleep.  

This constant is located in the cell.h constant in the event-driven 

simulator only.  Disabling this option for simulations with many stimuli 

(and thus fewer cells at resting potential) can improve the performance 

of the event-driven simulator. 

 

• CELL_REPORTS ENABLED:  This enables (1) or disables (0) whether 

or not individual cell reports will be produced by the simulators.  This 

constant is located in the param.h file of both simulators. 

 

3.3.4. Graphical Simulation Snapshots 

The mechanism for creating graphical snapshots of simulations for both 

simulators requires that a directory be set up at the path Output\Dump relative to 

the location of the simulator executable file.  The frequency of snapshot creation 

is set by the constant STATE_SNAPSHOTS_INTERVAL defined in main.c for 

both simulators.  This constant represents the number of standard voltage dumps 

that occur between the creation of consecutive snapshot files. 

This feature is only enabled if the preprocessor option 

STATE_SNAPSHOTS_ENABLED is turned on (see section 3.3.3).  The 

generated snapshot files are located in the Output\Dump directory (relative to the 

location of the simulator executable file) and each have the name snapxxxx.ppm, 

where xxxx is the number of standard voltage dumps that occurred before the 

creation of the snapshot file.  The number xxxx includes leading zeroes so that 

alphabetical ordering is preserved, making it easier for the user to view the 

snapshots in a slideshow type manner. 



  

 

4. Code Maintenance Manual 
The following sections serve as a reference for maintaining the code of both 

simulators.  These sections detail the various source files for each simulator and 

highlight where to find the important functions used to carry out simulations. 

Each simulator has a series of header (.h) files that define constants and various 

structs used in the simulator.  As virtually all of these structures are well commented 

in the source code and self-explanatory, the following sections will focus much more 

on the functional (.c) source files. 

 

4.1. Event Driven Simulator 

The event-driven simulator makes use of several source files that separate the core 

functional units from one another.  The files heap.c, list.c, and queue.c define the 

operations required for maintaining the correct ordering of events.  The event.c file 

provides various operations for manipulating events.  The param.c file contains 

functions for processing the various types input information from the user and setting 

up the simulation-wide parameter structure.  The cell.c file contains operations on 

cells that are used inside of the main simulation loop.  The last file, main.c, contains 

the main operating function that ties all of the other pieces together.  The most 

important functionality that can be found in each of these files is further detailed in 

the following subsections. 

4.1.1. queue.c 

The queue.c file provides operations for the specialized priority queue that is 

used by the event-driven simulator.  The priority queue contains two lists and one 

heap for storing the different types of events.  The queue operations provided 

include export/importQueue (for state saving and loading), create/destroyQueue, 

peekNextTime (for obtaining the next event time), and the traditional enqueue and 

dequeue operations. 



  

The queue works to ensure that the correct ordering of all events is 

maintained.  Because the QUERY_NEIGHBOR events can only be scheduled for 

the current or next time-step, each of the queue’s two lists contains all 

QUERY_NEIGHBOR events for one of these two possible time-steps.  All of the 

other types of events are placed on the heap.  The enqueue determines which of 

the three data structures should receive the incoming event and performs the 

insertion using the appropriate operation.  The dequeue operation determines 

which of the two data structures (the heap and the list for the current time-step) 

has the next event and removes the appropriate event from the correct data 

structure.  The queue attempts to improve the performance of these operations by 

using flags to designate which data structure contains the next event and whether 

or not the lists are empty; because QUERY_NEIGHBOR events are by far the 

most commonly enqueued and dequeued type of events, the queue attempts to 

offload most of these “queue-state” calculations to operations involving the heap. 

4.1.2. list.c 

The list.c file provides operations for maintaining a list of events that are to all 

occur at the same time.  It is implemented as a circular array of fixed capacity that 

may be expanded by calling the expandList operation.  This operation is called 

automatically by the addToTail operation if the list full, although it is 

recommended that this check be commented out to achieve peak performance 

during simulations because an upper bound on the list size may be calculated at 

the start of the simulation.  The operation addToTail adds a new event to the end 

of the list while the removeFromHead operation removes and returns the first 

event from the list.  Both of these operations may be performed in constant time.  

The create/destroyList operations handle the dynamic memory allocation, and the 

import/exportList operations handle state saving and loading.  Each list has an 

associated time, which matches the time of all of its events, and this attribute can 

be retrieved through the getTime operation. 

 



  

4.1.3. heap.c 

The heap.c file provides the operations required for a standard implementation 

for a min-heap.  It is implemented as its array notation of fixed capacity that may 

be expanded by calling the expandHeap operation.  The insert and removeNext 

operations are the standard heap operations for inserting an arbitrary new event 

and removing the event with the highest priority, respectively.  Both of these 

operations fix the heap based upon the priorities of the events in O(log2 n) time, 

where higher priority is defined primarily by a lower event time and secondarily 

by the type of the event (stimulation events have priority over non-stimulation 

events with the same time).  The getNextTime event reports the time of the event 

with the highest priority on the heap.  The create/destroyHeap operations handle 

the dynamic memory allocation, and the import/exportHeap operations handle 

state saving and loading.   

4.1.4. event.c 

The event.c file provides some very basic operations that may be performed 

on events.  The create/destroyEvent operations handle the dynamic memory 

allocation, and the import/exportEvent operations handle state saving and loading.  

The remaining operation, provideStimulusInfo, simply accepts a stimuluation 

event and populates it with information about the stimulus (location, strength, 

etc.). 

 

4.1.5. param.c 

The param.c file contains all operations relating to the reading of input files 

and command line parameters.  The function processCommandLineArgs parses 

the command-line input and performs the appropriate action using the specified 

argument for each command-line parameter.  Each of the remaining operations 

populates the simulation-wide parameter structure with the information provided 

by the corresponding input files: 



  

• readHACoefficients: Hybrid Automata Specification File (see section 

3.3.2.1.2) 

• readParam: General Parameter and Stimulus File (see section 

3.3.2.1.1) 

• readCellReportInfo: Individual Cell Report Information File (see 

section 3.3.2.1.3) 

• readStateInfo: State Saving Information File (see section 3.3.2.1.4) 

 

4.1.6. cell.c 

The cell.c file consists of a variety of operations that process cells throughout 

the course of a simulation.  The create/destroyCell operations handle the dynamic 

memory allocation, and the import/exportCell operations handle state saving and 

loading.  The initializeParamWithDefaults operation initializes the HA 

coefficients to their default values and the function newton is an implementation 

of Newton’s method used to solve for the times that state transitions will occur. 

The remaining functions are specifically called by the main simulation loop 

throughout the course of the simulation.  The functions notifyCell and 

putCellToSleep are used for waking up sleeping cells and putting cells below the 

sleeping threshold, respectively.  The function getVoltage calculates the voltage 

for a particular cell at a particular time, regardless of its current state.  The 

function getCurrent approximates the current for cells in the resting and 

stimulated states (this function is undefined for the upstroke and plateau states).   

The updateVoltage function starts by performing time-step integration on a 

cell by taking into consideration its current, the affects of its neighbors, and 

applied external stimuli.  This function is where the diffusion model equation is 

implemented.  The remainder of the function handles all state transitions from 

resting to stimulated, stimulated to resting, and stimulated to upstroke as well as 

the sending of alerts to the main simulation loop when neighboring cells should 

be awakened and if a transition to the upstroke state is required. 



  

The beginUpstroke function is called when a cell is about to enter the upstroke 

state.  It correctly sets up the cell’s variables so that the voltage can be computed 

at any time while it is in this state and calculates the time that it will be leaving 

this state.  The updateState function actually performs the transitions from 

upstroke to plateau and from plateau to resting and returns the calculated time for 

the cell’s next transition. 

It is important to note that cells maintain their variable values for both the 

current and previous time-steps.  The reason that this is done is because some 

cells will have time-step integration performed on them before others will, and the 

old values of the variables are required to emulate the process of updating all cells 

at the same exact time. 

 

4.1.7. main.c 

The file main.c contains the main simulation function along with a couple of 

helper functions.  The functions import/exportCells handle state saving and 

loading for the entire grid of cells.  The function fileStr generates file names for 

state snapshot files (see section 3.3.4) such that alphabetical ordering of the file 

names is the same as their chronological ordering.  The main function actually 

carries out the simulation by proceeding through various phases, namely the input 

reading phase, the initialization phase, the main simulation phase, and the cleanup 

phase. 

The input reading phase begins by processing the command-line parameters 

and by reading the appropriate input files (see section 4.1.5).  The output files are 

also set up at this point for writing.  The initialization phase follows by checking 

to see if a loading from a state file is required.  If loading is required, the 

importCells and importQueue operations are called to retrieve the previous 

simulation state (with the exception of the original stimulation events).  

Otherwise, all of the cells are created at the resting state and the initial events are 

placed onto an initially empty queue.  In either case, the appropriate stimulation 

events are added to the queue.  This mechanism allows the times and locations of 



  

stimuli to be changed from one simulation to another, even if the two simulations 

use the same initial state. 

The main simulation loop will repeatedly take the next event off of the queue 

and process it until the time of the next event exceeds the ending time of the 

simulation.  Each event is handled as was described in section 1.3.1.  The only 

type of event that performs any additional actions is the OUTPUT_TO_FILE 

event, which handles a few other output related tasks such as generating cell 

reports and creating simulation snapshot files.  The SAVE_SYSTEM_STATE 

event is used to save the current simulation state to an output file as specified by 

the State Saving Information File (see section 3.3.2.1.4). 

The final phase of the main simulation procedure is the cleanup phase.  This 

phase consists of a final output dump, the deallocation of simulation resources, 

and the closing of all output file pointers. 

 

4.2. Time-step Integration Simulator 

The time-step integration simulator is essentially a simplified version of the 

event-driven simulator.  The files event.c, heap.c, list.c, and queue.c are not part of 

the time-step integration simulator because the simulation process makes no use of 

events.  The following subsections detail any significant differences in the time-step 

integration simulator files with respect to the event-driven simulator. 

4.2.1. param.c 

The param.c file for the time-step integration simulator is very similar to the 

one found in the event-driven simulator, except that it doesn’t contain a function 

for reading state info and the format of the input files is slightly different.  The 

following is a list of the functions for reading the input files with references to the 

file format: 

 

 



  

• readHACoefficients: Hybrid Automata Specification File (see section 

3.3.2.2.2) 

• readParam: General Parameter and Stimulus File (see section 

3.3.2.2.1) 

• readCellReportInfo: Individual Cell Report Information File (see 

section 3.3.2.2.3) 

 

4.2.2. cell.c 

The differences between the cell.c file found in the time-step integration 

simulator and the one found in the event-driven simulator are perhaps the most 

significant difference between the two simulators.  Instead of having the 

updateState and beginUpstroke operations, the time-step integration simulator 

uses the updateVoltage operation for all cells in all states during every time step.  

The getCurrent function is also now defined for every state (i.e., not only for the 

resting and stimulated states).  The import/exportCell operations and the newton 

function have also been omitted.  Other than these differences, the cell.c file is 

essentially the same in each of the two simulators. 

 

4.2.3. main.c 

The main.c file in the time-step integration simulator contains a much simpler 

version of the main simulation function found in the event-driven simulator.  The 

function does not use a queue, does not have any mechanism for loading and 

saving states, and does not make use of any events. 

The simulation loop runs on every time-step and carries out three operations 

during every iteration.  First, it checks for the beginning or the end of external 

stimuli and applies the necessary changes to the affected cells.  Second, it 

performs time-step integration on every cell by calling the updateVoltage 

operation.  Finally, it checks to see if any form of output is required and performs 

it as necessary.  The other aspects of the simulation process are effectively the 

same those found in the event-driven simulator. 
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