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Abstract

The medial reticular formation (mRF) has been pointed as the most likely substrate for a

brainstem action selection system. Additionally, a stochastic anatomical model has been

proposed to assess potential configurations of action representation within the internal

circuitry of the mRF. Under certain conditions, this anatomical model exhibits a rich

oscillatory behaviour. The aim of this work is two-fold: First, to extend the exploration

of the anatomical model by including oscillations and give a first step in testing hypothesis

of action representation under the light of this emergent property. Second, to explore the

model’s structure-dynamics relationship in terms of its small-world-ness and its relevance

for the oscillatory behaviour. It is proposed that assemblies of synchronised neurons

are the dynamical functional units that codify an action (or subaction) or an overall

behavioral state. It was found that different input levels applied on the same cluster

bring out synchronised ensembles of neurons involving different areas of the network. No

clear relation between dynamics and the structural property of small-world-ness was found

throughout this work.



1 Introduction

1.1 Action representation on the mRF

The behavioral repertoire exhibited by decerebrated animals and neonates lacking fully

operational basal ganglia suggests a brainstem based action selection system (Humphries,

Gurney, & Prescott, 2007). Due to its unique input/output configuration and internal

architecture, the medial reticular formation (mRF) has been proposed as a potential

substrate for a brainstem action selection system (Humphries et al., 2007). Additionally,

a combination of computational and robotic work has established considerable evidence

for this hypothesis(Humphries, Gurney, & Prescott, 2005).

In the work carried out by (Humphries et al., 2007), a stochastic anatomical model was

used to assess potential configurations of action representation within the internal circuitry

of the mRF. Evidence of functional organisation based on common activity patterns leaded

the authors to suggest a functional significance to the anatomical clustering exhibited by

the mRF.

Three hypotheses of action representation were explored. Two of them considered

a clustered representation where either (i) the output of each cluster could represent a

complete action, or (ii) the clusters activate sub-actions, each one being a component of

a coherent behaviour. The third alternative interpretation considered a non-local action

representation by reinterpreting the ’modes’ proposed by (Kilmer, McCulloch, & Blum,

1969) as simpler actions, and re-aiming the output of the model towards the activity

projected to the spinal cord rather than to the ascending systems. Thus, the activity

transmitted by an eventually-distributed group of projecting axons recruits the appro-

priate musculature for a given action (or sub-action). It is concluded that (ii) is the

most likely scheme of action representation yet the coexistence of a clustered and parallel

representations is left as an open possibility (Humphries et al., 2007).
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Under certain conditions, the anatomical model exhibits a rich oscillatory behaviour.

The aim of this work is to extend the exploration of the anatomical model (Humphries,

Gurney, & Prescott, 2006) by including oscillations and give a first step in testing hy-

pothesis of action representation under the light of this emergent property.

1.2 Oscillations and synchrony

Oscillations could be playing a major role in both ascending and descending systems of

the mRF. If we consider the mRF projections to thalamus and cortex, oscillations could

be of main importance in setting the global behavioral state of the animal (Kilmer et al.,

1969) and in explaining the desynchronisation of the cortical electroencephalogram under

stimulation of the mRF reported by (Moruzzi & Magoun, 1949). The interpretation can be

pushed even further by considering the mRF as a ’higher order’ CPG encoding a complex

orchestration of patterns to drive lower level CPGs in order to express more complex

behaviour. Moreover, this higher level CPG could be modulating the responsiveness of

target neurons to upper motor neuron afferents by periodically elevating the membrane

potentials of the target population providing time windows during which the target units

are more likely to respond (Hutcheon & Yarom, 2000).

It has been claimed that synchronous activity of oscillating networks are the bridge

between single-neuron activity and behaviour (Engel, Fries, & Singer, 2001). It is well

known that single neurons are able to express complex dynamics such as resonance and

oscillations at multiple frequencies (Hutcheon & Yarom, 2000) and it has also been sug-

gested that information could be represented by the timing of their activity within the

network (Buzsáki & Draguhn, 2004).

The main hypotheses of this work is that assemblies of synchronised neurons are the

dynamical functional units that codify an action (or subaction) or an overall behavioral

state. Consistent with this hypothesis, the degree of localisation of the neural representa-
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tion will be assessed in terms of the degree of localisation of these neural assemblies. How-

ever, rather than directly attributing a role to synchronised assemblies either in assending

or descending (motor) systems, the emphasis is put on the representational capacity of

the system in terms of these neural ensembles.

1.3 Small-world-ness

One of the major findings of the work carried out by (Humphries et al., 2006) is that the

mRF is most likely in a small-world regime. The characteristic properties found on this

type of networks can be desirable in an oscillatory sensory-motor bridge such as the mRF;

rapid synchronisation (Lago-Fernandez, Huerta, Corbacho, & Siguenza, 2000), consistent

stabilisation (Li & Chen, 2003) and increased persistence of activity (Roxin, Riecke, &

Solla, 2004) could facilitate the rapid establishment of stable and consistent (i.e. input

specific) neural assemblies for a given set of sensory input patterns. The present work

also explores the model’s structure-dynamics relationship in terms of its small-world-ness.

1.4 Model and simulation parameters

Table 1: RF cluster model parameters
parameter value description

Nc Nc = 8 Number of clusters in the model
n n = 50 Number of neurons per cluster
ρ ρ = 0.8 Proportion of projection neurons per cluster
ρ− ρ− = 0 Proportion of projection neurons which are inhibitory
P (c) 0 < P (c) ≤ 1 Inter-cluster collateral extension probability
P (p | c) 0 < P (p | c) ≤ 1 Remote connection-given-collateral probability
P (l) 0 < P (l) ≤ 1 Interneuron to local-neuron connection probability
ρs ρs = 1 Proportion of projection neurons receiving sensory input
λs λs = 0.5 Proportion of inter-neurons receiving sensory input
Si 0 ≤ Si ≤ 1 Input level at the ith cluster

The parameter values used for the stochastic model (Humphries et al., 2006) are
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summarised on table 1. P (c) is a distance dependent distribution defined according to

P (cij) = |i−j|−r, where cij is the event of a collateral extending from cluster i to cluster j

(i #= j) and r is a free parameter that will be specified for each simulation. The number of

clusters Nc is below the lower bound of the biological constrains estimated by (Humphries

et al., 2006) and it was chosen for computational feasibility reasons. P (l) and P (p|c)

are the main free parameters since they do not have supporting values in the literature

(Humphries et al., 2007). The ρ value was set to the middle of the plausible range and

λs was set to its maximum value due to the small proportion of interneurons set by the ρ

value chosen. All the projection neurons and interneurons are excitatory and inhibitory,

respectively. All the simulations were carried out during a time span of 3 seconds. The

rest of the parameters were chosen according to the original study (Humphries et al.,

2007). The activity of all the projection neurons during the time-span of the simulation

is referred to as the ‘output’ of the model throughout this work. The terms ‘unit’ and

‘neuron’ are used indistinctively.

2 Structure and dynamics

2.1 Small-world analysis

In order to asses the ’small-world-ness’ of a given instantiation of the model, its cluster

coefficient Cs, characteristic path length Ls and corresponding values for an equivalent

random network Cr and Lr were estimated. The ’small-world-ness’ measure used is defined

as S = γ/λ, where γ = Cs/Cr and λ = Lc/Lr (Humphries et al., 2006). After counting

the number of edges ne of a given instance of the model, the value of Cr was estimated

according to the expected clustering coefficient of the equivalent directed random graph

Cr = ne/(N(N − 1)) where N is the number of units (i.e edges) of the model(Fagiolo,

2007). Lr was estimated according to Lr = 1 + ln(n/z1)/ ln(z2/z1) where z1 and z2

4



are the average numbers of first and second nearest neighbors from which a vertex can

be reached, respectively (Newman, Strogatz, & Watts, 2001)(Boccaletti, Latora, Moreno,

Chavez, & Hwang, 2006). Cs and Ls were estimated according to the definitions of (Watts

& Strogatz, 1998)

For each (P (l), P (p|c)) pair taken from the parameters set Π = {[0.1, 1] × [0.1, 1]},

a single instance of the stochastic model was generated and its small-world score was

estimated. The parameters were taken from the set Π in steps of 0.1. The experiment

was repeated for three different P (c) distributions defined by values of r taken from

{0.25, 0.75, 1.5}. For each value of r, a S-score surface was obtained. The three surfaces

are depicted on figure 1.
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Figure 1: Small-world-ness for different values of P (l) and P (p|c). Different surfaces
correspond to different values of P (c) parametrised by r

For small networks like those generated in this study, Lc ≈ Lr so the S-score will be

strongly governed by the γ factor(Montoya & Sole, 2002). In consequence, the parameters

affecting the relative clustering coefficient Cs/Cr of the model instance will mainly affect
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the S-score.

Since interneuron connections are confined within the cluster, higher values of P(l)

will increase Cs. The higher the proportion of interneuron connections, the higher the

chance of a given unit to contact two already linked units.

When P (p|c) increases, the value of Cs decreases. Suppose a projection neuron cp

is contacting two projection units ap and bp. If ap and bp are both in the same clus-

ter, the probability of both neurons being connected P c(ap, bp) = 0 since two projection

neurons within the same cluster cannot contact each other. In this case, the chance to

increase Cs will be given by the probability of contacting interneuron-interneuron (i− i)

or interneuron-projection (i − p) pairs that are already linked. Since the proportion of

projection neurons is considerably higher than the proportion of interneurons, the most

common case will be to contact unconnected pairs. The probability of finding p − i or

i − i pairs are directly governed by P (l). Therefore, the maximum clustering coefficient

will occur at the maximum P (l) and minimum P (p|c). Since extra-cluster connections

tend to degrade S, and the probability of establishing remote connections ∼ P (c)P (p|c),

a higher value of r (more rapidly decaying P(c)) will improve Cs.

It is worth to mention that since the distance in the distance-dependent decaying of

P(c) is defined in terms of cluster-number, the value of r must be adjusted according to

the chosen Nc. A given value of r will describe a steeper decay in a network consisting of a

larger number of clusters. Thus, the smaller the value of r used, the more P(c) resembles

a uniform distribution. During the remaining of this section, the value of r will be set

to 1.5 in order to encompass a wider span of S-scores within the (P (l), P (p|c) space (see

fig.1).
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2.2 Global synchrony dependence on P (l) and P (p|c)

The degree of synchrony within a set of unit outputs S ⊂ 1, 2, ..., n is defined according

to

syn(S) = σ

(
1

|S|
∑

i∈S
xi

) /
1

|S|
∑

i∈S
σ(xi) (1)

where |S| is the cardinality of S and σ(x) is given by (Lago-Fernandez et al., 2000).

σ2(x) =
1

T2 − T1

∫ T2

T1

[〈x(t)〉t − x(t)]2 dt (2)

which corresponds to the ‘temporal variance’of the signal measured across the time

span between T1 and T2.

In order to assess the dependence of the overall synchrony on the free parameters P (l)

and P (p|c), several instances of the model were generated by taking (P (l), P (p|c)) pairs

from the parameters set Π. For each instance of the model, a constant input level S4 = 0.1

was applied on a single unit within the network (ρs = 0.025) and the synchrony measure

defined on equation 1 was applied to the entire population output.

The above mentioned process was repeated 20 times, using different random seeds.

This experiment was performed under four different conditions consisting in two different

excitatory weight values (W ) applied under under both balanced and unbalanced regimes.

The surface plots depicted on figure 2 show the results of these experiments.

The abrupt increase in the overall synchrony of the network depicted along the P (p|c)

axis on figure 2.A suggests the existence a ‘critical mass’ of remote connections required

to achieve full synchrony. Under the unbalanced regime, the negative effect of P (l) is

negligible due to the relative smaller amount of inhibitory connections.

Figure 2.B show the effect of decreasing W under the unbalanced regime. The re-

mote connections have been weighted down and therefore the required ‘critical mass’ has

increased proportionally. Again, the effect of P (l) is negligible.
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Figure 2: Overall synchrony dependence on P (l) and P (p|c) (Average over 20 experi-
ments). A-B. Unbalanced network. Excitatory weights (W ) set to 0.25 and 0.1, respec-
tively. The decrease in W increases the critical value of P (p|c) required for full synchrony.
The effect of P (l) is negligible due to the relative smaller amount of inhibitory connec-
tions. C-D. Balanced network. Excitatory weights (W ) set to 0.5 and 0.25, respectively.
Due to the balanced condition, the effect of P(l) becomes significant. here

Figures 2.C and 2.D Show the effect of balancing the weights. For values of P (l) ≈ 1

many weak inhibitory connections are effectively counterbalancing the influence of remote

afferent projecting neurons. As the value of P (l) decreases, the number of i-p connections

decreases. In spite their weights have been augmented proportionally, i-p connections can-

not distribute uniformly along the entire population of projecting neurons within a given

cluster permitting a foreign influence to propagate across the network. Thus, there’s no
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longer a ‘critical mass’ of remote connections and the steep change of synchrony becomes

softer with increasing values of P (l).

3 Input/Output Dynamics

3.1 Network coherence

Network coherence is of major importance since provides the environment for neural

assemblies to emerge. Once coherence is achieved in a neural population, synchrony can

be sustained even with very weak synaptic links as long as the frequency of the coupled

oscillators remain similar(Buzsáki, Geisler, Henze, & Wang, 2004). It is therefore essential

to rely on a consistent measure of network coherence before analysing the network response

to cluster input.

One way to measure the degree of coherence of a temporal waveform is by fitting a

gaussian to the highest peak of its power spectral density and calculating

β =
Hω

∆ω
(3)

where H corresponds to the maximum value of the peak, ω its corresponding central

frequency and ∆ω its full width at half maximum(Gang, Ditzinger, Ning, & Haken, 1993).

For a perfectly coherent signal such as cos(ωt + φ), ∆ω → 0 and therefore β → ∞.

In practice, the use of finite sampling rates and constraints on the simulation output, set

bounds on H and ∆ω.

I order to describe de global coherence of the network, a vector β̃ containing the values

βi for each ith output signal, is defined. A straightforward way to estimate the global

coherence of the network would be to calculate the expected coherence of the population

by averaging among all the elements of β̃ to obtain β. However, the way β is defined in
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addition to the limitation of its value for perfectly coherent signals makes β an unreliable

estimator of global coherence.

The fact that β depends on both the amplitude and a bounded ω/∆ω implies that low

β values can result either from weak, perfectly coherent low-frequency signals (Hω , ∆ω)

and relatively stronger incoherent signals (∆ω , Hω). The inability to discriminate

among these two cases creates several problems for β as a reliable estimator. This point

will be illustrated by means of two examples.

e.g. 1 Suppose we have two simulation outcomes represented by two different sets A and

B of fluctuating signals. Set A contains a few high amplitude, perfectly coherent

signals embedded within a majority of highly incoherent ones yielding an average

coherence βA. Set B, contains only perfectly coherent but relatively weaker signals,

each of which yields a βi = βA . Both sets will exhibit the same β albeit set B

should be clearly regarded as a more coherent configuration.

e.g. 2 Suppose that the two sets defined on e.g. 1 contain the same subset of perfectly

coherent units but differ in the subset of non-coherent units. The non-coherent

elements on set A consist of constant signals each of which as a βi ≈ 0. Set B

contains incoherent fluctuating signals having the same β values as the non-coherent

subset of A. Again, both sets will be regarded as having the same global coherence.

In order to introduce a new coherence estimator. Consider the vectors σ̃2 and β̃

describing the temporal variance and coherence of every signal in the set to be tested,

respectively. By taking eq. (3) and noting that σ2(c) ∝ H for a perfectly coherent signal

c(t), a simulation set consisting only of perfectly coherent signals of different amplitudes

oscillating at the same frequency will exhibit a strongly linear dependence between the

corresponding elements of the σ̃2 and β̃ vectors.

If (σi, βi) pairs taken from a set of perfectly coherent units oscillating at the same
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frequency ωs are scattered on a σ−β plot, all the points corresponding to that set will lay

on a straight line with a slope value depending on ωs. Any unit oscillating at a different

frequency or in an incoherent manner will lay away from the characteristic straight line.

Moreover, if a given population is composed by different subsets oscillating at different

frequencies, the points representing that population will lay in different lines according

to the different slopes defined by the different subsets frequencies. Thus, the frequency

variability within a set, as well as the number of incoherent oscillating signals will degrade

the linear dependence between σ and β. Additionally, non-oscillating units will lay near

the origin of the σ − β space, leaving this linear dependence unaltered.

Consistently this, the correlation coefficient ζ between σ̃2 and β̃ is proposed as a

measure of network coherence, which is defined as

ζ =
cov(σ̃2, β̃)

var(σ̃2)var(β̃)
(4)

and provides a measure of the linear dependence between σ̃2 and β̃ indicating to which

extent the units that are oscillating are doing it in a coherent manner.

3.2 Effect of cluster input level on network coherence

A single anatomical instantiation of the model was used to analyse the network output

coherence response to different levels of input applied on different clusters. The free

parameters were set to the values r = 0.25, P (l) = 0.25, P (p|c) = 0.1 and W = 0.1 under

balanced regime in order to place the model within an oscillatory zone in the parameters

space. For each cluster i in the model, the input was varied in steps of 0.1 along the

range Si ∈ [0.11]. The output-coherence-input characteristic (ζ−Si) obtained for clusters

i = 1, 4, 6, 8 are shown in3.

The most striking feature of the result, is the strong dependence of network coherence
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Figure 3: Network output coherence response to inputs applied on different clusters
(S1, S4, S6 and S8). Network coherence responds in a characteristic way depending on
which cluster the input is applied on.

on the input level. In a network with the same structural properties, global coherence

values can span from 0.1 to > 0.9 solely due to the input level applied on a single cluster.

Moreover, the dependence can follow different tendencies, either decreasing (as when S1 is

varied) or increasing (as when S6 is varied) with input level or even present local minima

and maxima (as when S4 and S8 are varied). The important point here is that output

can sustain synchronous neural assemblies at different input levels depending on which

cluster the input is applied on.
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3.3 Effect of cluster input level on remote units synchrony

The emergence of neural assemblies was assessed by analysing the synchrony matrix M

of the model output obtained from each experiment described in the previous section.

The synchrony matrix is defined according to Mij = Mji = syn({i, j}), where {i, j}

is a pair of unit output indices and syn is the measure defined in equation (1). Thus,

M is describing the dynamical connectivity of the network in a similar way a weighted

adjacency matrix does with structural connectivity.
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Figure 4: A-D. Number of remote and local synchronised units pairs emerging at different
input levels. The synchronised pairs are all those ({i, j}) pairs with syn({i, j}) > 0.96

One M was obtained from the entire output of the model for each Si value. From

each M , the number of local and remote synchronised pairs were extracted, where a

synchronised pair is defined as {i, j} : sync({i, j}) > 0.96, local pairs are defined as
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those contained within the same cluster and remote pairs as those contained in different

clusters. The threshold value of synchrony (0.96) corresponds to the value obtained from

two sinusoids de-phased by 30o. Figure 4, shows the counts of synchronised local and

remote pairs for a given input level applied at clusters 1, 4, 6 and 8.

S4 = 0.1

A

S4 = 0.2

B

S4 = 0.7

C

S4 = 0.8

D

Figure 5: A-D. Graphs showing the different ensembles emerging at different input levels
applied on cluster 4 (S4). Units pairs with syn > 0.96 are joined by a straight line.

From this particular results, it can be seen that the number of synchronised pairs are

dominated by remote clusters links. Comparatively, the number of local pairs formed do

not vary considerably with input level. The fact that the number of remote pairs strongly

varies with input level suggests a distributed representation in terms of synchrony. In

order to assess this possibility graphs, were constructed from binary adjacency matrices
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taken from M by assigning a 1 for all Mij > 0.96 and a 0 for all Mij ≤ 0.96. In figure 5

the graphs corresponding to four values of S4 are shown. The graphs shown were taken

at input levels were the network exhibited high coherence. It is clear on this case the

emergence of different neural ensembles for different input values.

Careful examination of figure 5 evidences how relatively close values of input level

applied on the same cluster bring out ensembles of neurons involving different areas of the

network. The transition from S4 = 0.1 to S4 = 0.2 (Fig. 5.A-B) involves the recruitment

of a considerable number of remote units. The transition from S4 = 0.7 to S4 = 0.8 (Fig.

5.C-D) does not involve a considerable recruitment of additional units (see fig. 4.B) but

clearly show how different set of neurons become synchronised.

4 Conclusions

The fact that the model is able to express synchronised activity among different popula-

tions of neurons depending on the input level applied to a particular cluster has major

implications for both the explanatory power of the model and its encoding capacity.

If neurons within a given cluster are contacting a specific subset of passing fibers, the

input level of a cluster in the model can be interpreted as representing the correlation

among the activities of those fibers. Under the light of the findings described on the

last section, the correlated activation of a particular set of fibers can trigger the recruit-

ment of different oscillating neural assemblies that, in turn could activate unique sets of

downstream population contacted by both the ascending and descending systems of the

mRF.

If we consider the mRF projections to the thalamus and cortex, these ensembles of

oscillators are in a good position to explain the desynchronisation of the cortical elec-

troencephalogram under stimulation of the mRF reported by (Moruzzi & Magoun, 1949).
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There is evidence that out of phase rhythmic activity can selectively suppress oscillations

in the target networks, an example of this is the suppression of gamma-frequency rhythm

in the hippocampus by the dentate gyrus input (Csicsvari, Jamieson, Wise, & Buzsaki,

2003). This is also consistent with the interpretation that the mRF acts as a ’mode

selector’ which sets the global behavioral state of the animal (Kilmer et al., 1969).

It is clear from the results on local v/s remote synchronised pairs, that neural assem-

blies are more likely to be composed by units from different clusters. If an hypothesis

of action representation in terms of synchronised oscillatory behavior is to be made, the

evidence found in this work points towards a distributed one.

The inter-cluster nature of neural assemblies allows the system to encode a huge variety

of output behaviours that could be further multiplied by the available modes of oscillation

in the network. Further exploration of the model should assess its capacity to oscillate

coherently at different frequencies simultaneously.

Since this is not a spiking model, care must be taken when interpreting oscillations and

synchrony. Usually, the oscillatory behavior is studied as an emergent property of large

models composed by spiking units (Lago-Fernandez et al., 2000), and synchrony is studied

in terms of spike co-occurrence among their outputs (Masuda & Aihara, 2004). However,

in models composed of leaky integrators (LIs), where oscillations emerge at the unit level,

synchrony does not constitute a reliable measure of spiking co-occurrence. While it’s true

that synchronised oscillatory LIs are somehow representing two neurons that are more

likely to co-fire, it is also true that two synchronised LI’s could be also representing two

silent neurons whose respective membrane potentials are oscillating under subthreshold

regime. Therefore, if the oscillatory behavior of the model is to be seriously considered,

the units should be updated to a spiking neuron model.

No clear relation between dynamics and the structural property of small-world-ness

was found throughout this work.
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