Markovian model for cardiac sodium channel (Clancy, Rudy 2002)


Complex physiological interactions determine the functional consequences of gene abnormalities and make mechanistic interpretation of phenotypes extremely difficult. A recent example is a single mutation in the C terminus of the cardiac Na(+) channel, 1795insD. The mutation causes two distinct clinical syndromes, long QT (LQT) and Brugada, leading to life-threatening cardiac arrhythmias. Coexistence of these syndromes is seemingly paradoxical; LQT is associated with enhanced Na(+) channel function, and Brugada with reduced function. Using a computational approach, we demonstrate that the 1795insD mutation exerts variable effects depending on the myocardial substrate. We develop Markov models of the wild-type and 1795insD cardiac Na(+) channels. See reference for more and details. The model files were submitted by: Dr. Jiun-Shian Wu, Dr. Sheng-Nan Wu, Dr. Ruey J. Sung, Han-Dong Chang.

Model Type: Channel/Receptor

Currents: I Sodium

Model Concept(s): Ion Channel Kinetics; Pathophysiology; Heart disease; Brugada; Long-QT; Markov-type model

Simulation Environment: XPPAUT

Implementer(s): Wu, Sheng-Nan [snwu at mail.ncku.edu.tw]; Chang, Han-Dong; Wu, Jiun-Shian [coolneon at gmail.com]; Sung, Ruey J

References:

Clancy CE, Rudy Y. (2002). Na(+) channel mutation that causes both Brugada and long-QT syndrome phenotypes: a simulation study of mechanism. Circulation. 105 [PubMed]


This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.