Dudman JT, Nolan MF. (2009). Stochastically gating ion channels enable patterned spike firing through activity-dependent modulation of spike probability. PLoS computational biology. 5 [PubMed]

See more from authors: Dudman JT · Nolan MF

References and models cited by this paper

Abbott LF, Dayan P. (2001). Theoretical Neuroscience. Computational and Mathematical Modeling of Neural Systems.

Alonso A, Klink R. (1993). Differential electroresponsiveness of stellate and pyramidal-like cells of medial entorhinal cortex layer II. Journal of neurophysiology. 70 [PubMed]

Alonso A, Llinás RR. (1989). Subthreshold Na+-dependent theta-like rhythmicity in stellate cells of entorhinal cortex layer II. Nature. 342 [PubMed]

Berger T, Larkum ME, Lüscher HR. (2001). High I(h) channel density in the distal apical dendrite of layer V pyramidal cells increases bidirectional attenuation of EPSPs. Journal of neurophysiology. 85 [PubMed]

Buzsáki G. (2002). Theta oscillations in the hippocampus. Neuron. 33 [PubMed]

Buzsáki G, Draguhn A. (2004). Neuronal oscillations in cortical networks. Science (New York, N.Y.). 304 [PubMed]

Cannon RC, D'Alessandro G. (2006). The ion channel inverse problem: neuroinformatics meets biophysics. PLoS computational biology. 2 [PubMed]

Chow CC, White JA. (1996). Spontaneous action potentials due to channel fluctuations. Biophysical journal. 71 [PubMed]

Conti F, Wanke E. (1975). Channel noise in nerve membranes and lipid bilayers. Quarterly reviews of biophysics. 8 [PubMed]

Destexhe A, Rudolph M. (2004). Extracting information from the power spectrum of synaptic noise. Journal of computational neuroscience. 17 [PubMed]

Diba K, Koch C, Segev I. (2006). Spike propagation in dendrites with stochastic ion channels. Journal of computational neuroscience. 20 [PubMed]

Dickson CT, Magistretti J, Shalinsky M, Hamam B, Alonso A. (2000). Oscillatory activity in entorhinal neurons and circuits. Mechanisms and function. Annals of the New York Academy of Sciences. 911 [PubMed]

Dickson CT et al. (2000). Properties and role of I(h) in the pacing of subthreshold oscillations in entorhinal cortex layer II neurons. Journal of neurophysiology. 83 [PubMed]

Dolorfo CL, Amaral DG. (1998). Entorhinal cortex of the rat: organization of intrinsic connections. The Journal of comparative neurology. 398 [PubMed]

Dorval AD. (2008). Probability distributions of the logarithm of inter-spike intervals yield accurate entropy estimates from small datasets. Journal of neuroscience methods. 173 [PubMed]

Dorval AD, White JA. (2005). Channel noise is essential for perithreshold oscillations in entorhinal stellate neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 25 [PubMed]

Engel TA, Schimansky-Geier L, Herz AV, Schreiber S, Erchova I. (2008). Subthreshold membrane-potential resonances shape spike-train patterns in the entorhinal cortex. Journal of neurophysiology. 100 [PubMed]

Erchova I, Kreck G, Heinemann U, Herz AV. (2004). Dynamics of rat entorhinal cortex layer II and III cells: characteristics of membrane potential resonance at rest predict oscillation properties near threshold. The Journal of physiology. 560 [PubMed]

Faisal AA, Laughlin SB. (2007). Stochastic simulations on the reliability of action potential propagation in thin axons. PLoS computational biology. 3 [PubMed]

Fernandez FR, White JA. (2008). Artificial synaptic conductances reduce subthreshold oscillations and periodic firing in stellate cells of the entorhinal cortex. The Journal of neuroscience : the official journal of the Society for Neuroscience. 28 [PubMed]

Fransén E, Alonso AA, Dickson CT, Magistretti J, Hasselmo ME. (2004). Ionic mechanisms in the generation of subthreshold oscillations and action potential clustering in entorhinal layer II stellate neurons. Hippocampus. 14 [PubMed]

Fyhn M, Molden S, Witter MP, Moser EI, Moser MB. (2004). Spatial representation in the entorhinal cortex. Science (New York, N.Y.). 305 [PubMed]

Giocomo LM, Zilli EA, Fransén E, Hasselmo ME. (2007). Temporal frequency of subthreshold oscillations scales with entorhinal grid cell field spacing. Science (New York, N.Y.). 315 [PubMed]

HODGKIN AL, HUXLEY AF. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of physiology. 117 [PubMed]

Haas JS, Dorval AD, White JA. (2007). Contributions of Ih to feature selectivity in layer II stellate cells of the entorhinal cortex. Journal of computational neuroscience. 22 [PubMed]

Haas JS, White JA. (2002). Frequency selectivity of layer II stellate cells in the medial entorhinal cortex. Journal of neurophysiology. 88 [PubMed]

Hafting T, Fyhn M, Molden S, Moser MB, Moser EI. (2005). Microstructure of a spatial map in the entorhinal cortex. Nature. 436 [PubMed]

Harris-Warrick RM. (2002). Voltage-sensitive ion channels in rhythmic motor systems. Current opinion in neurobiology. 12 [PubMed]

Hasselmo ME, Fransen E, Dickson C, Alonso AA. (2000). Computational modeling of entorhinal cortex. Annals of the New York Academy of Sciences. 911 [PubMed]

Hille B. (2001). Ion channels of excitable membranes (3rd Ed).

Hopfield JJ, Tank DW. (1986). Computing with neural circuits: a model. Science (New York, N.Y.). 233 [PubMed]

Izhikevich EM. (2000). Neural excitability, spiking and bursting Int J Bifurcat Chaos Appl Sci Eng. 10

Izhikevich EM, Desai NS, Walcott EC, Hoppensteadt FC. (2003). Bursts as a unit of neural information: selective communication via resonance. Trends in neurosciences. 26 [PubMed]

Jacobson GA et al. (2005). Subthreshold voltage noise of rat neocortical pyramidal neurones. The Journal of physiology. 564 [PubMed]

Klink R, Alonso A. (1993). Ionic mechanisms for the subthreshold oscillations and differential electroresponsiveness of medial entorhinal cortex layer II neurons. Journal of neurophysiology. 70 [PubMed]

Koch C. (1999). Biophysics Of Computation: Information Processing in Single Neurons.

Kole MH, Hallermann S, Stuart GJ. (2006). Single Ih channels in pyramidal neuron dendrites: properties, distribution, and impact on action potential output. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]

Kole MH et al. (2008). Action potential generation requires a high sodium channel density in the axon initial segment. Nature neuroscience. 11 [PubMed]

Lisman JE. (1997). Bursts as a unit of neural information: making unreliable synapses reliable. Trends in neurosciences. 20 [PubMed]

Magee JC. (1998). Dendritic hyperpolarization-activated currents modify the integrative properties of hippocampal CA1 pyramidal neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 18 [PubMed]

Magee JC. (1999). Dendritic Ih normalizes temporal summation in hippocampal CA1 neurons Nature neuroscience. 2 [PubMed]

Mainen ZF, Sejnowski TJ. (1996). Influence of dendritic structure on firing pattern in model neocortical neurons. Nature. 382 [PubMed]

Metzner W, Koch C, Wessel R, Gabbiani F. (1998). Feature extraction by burst-like spike patterns in multiple sensory maps. The Journal of neuroscience : the official journal of the Society for Neuroscience. 18 [PubMed]

Migliore M, Shepherd GM. (2002). Emerging rules for the distributions of active dendritic conductances. Nature reviews. Neuroscience. 3 [PubMed]

Neher E, Sakmann B. (1976). Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature. 260 [PubMed]

Nolan MF, Dudman JT, Dodson PD, Santoro B. (2007). HCN1 channels control resting and active integrative properties of stellate cells from layer II of the entorhinal cortex. The Journal of neuroscience : the official journal of the Society for Neuroscience. 27 [PubMed]

Nolan MF et al. (2004). A behavioral role for dendritic integration: HCN1 channels constrain spatial memory and plasticity at inputs to distal dendrites of CA1 pyramidal neurons. Cell. 119 [PubMed]

Nolan MF et al. (2003). The hyperpolarization-activated HCN1 channel is important for motor learning and neuronal integration by cerebellar Purkinje cells. Cell. 115 [PubMed]

Otmakhova NA, Lisman JE. (2004). Contribution of Ih and GABAB to synaptically induced afterhyperpolarizations in CA1: a brake on the NMDA response. Journal of neurophysiology. 92 [PubMed]

Perkel DH, Gerstein GL, Moore GP. (1967). Neuronal spike trains and stochastic point processes. I. The single spike train. Biophysical journal. 7 [PubMed]

Press WH, Teukolsky SA, Flannery BP. (1992). Numerical recipes in C: The Art of Scientific Computing, 2nd edn.

Rosenkranz JA, Johnston D. (2006). Dopaminergic regulation of neuronal excitability through modulation of Ih in layer V entorhinal cortex. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]

Sargolini F et al. (2006). Conjunctive representation of position, direction, and velocity in entorhinal cortex. Science (New York, N.Y.). 312 [PubMed]

Schneidman E, Freedman B, Segev I. (1998). Ion channel stochasticity may be critical in determining the reliability and precision of spike timing. Neural computation. 10 [PubMed]

Shadlen MN, Newsome WT. (1998). The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. The Journal of neuroscience : the official journal of the Society for Neuroscience. 18 [PubMed]

Southan AP, Morris NP, Stephens GJ, Robertson B. (2000). Hyperpolarization-activated currents in presynaptic terminals of mouse cerebellar basket cells. The Journal of physiology. 526 Pt 1 [PubMed]

Strata F. (1998). Intrinsic oscillations in CA3 hippocampal pyramids: physiological relevance to theta rhythm generation. Hippocampus. 8 [PubMed]

Strauss U et al. (2004). An impaired neocortical Ih is associated with enhanced excitability and absence epilepsy. The European journal of neuroscience. 19 [PubMed]

Tsay D, Dudman JT, Siegelbaum SA. (2007). HCN1 channels constrain synaptically evoked Ca2+ spikes in distal dendrites of CA1 pyramidal neurons. Neuron. 56 [PubMed]

Turrigiano GG, Nelson SB. (2000). Hebb and homeostasis in neuronal plasticity. Current opinion in neurobiology. 10 [PubMed]

Waters J, Helmchen F. (2006). Background synaptic activity is sparse in neocortex. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]

White JA, Klink R, Alonso A, Kay AR. (1998). Noise from voltage-gated ion channels may influence neuronal dynamics in the entorhinal cortex. Journal of neurophysiology. 80 [PubMed]

White JA, Rubinstein JT, Kay AR. (2000). Channel noise in neurons. Trends in neurosciences. 23 [PubMed]

Williams SR, Christensen SR, Stuart GJ, Häusser M. (2002). Membrane potential bistability is controlled by the hyperpolarization-activated current I(H) in rat cerebellar Purkinje neurons in vitro. The Journal of physiology. 539 [PubMed]

Witter MP, Amaral DG. (1991). Entorhinal cortex of the monkey: V. Projections to the dentate gyrus, hippocampus, and subicular complex. The Journal of comparative neurology. 307 [PubMed]

Zhu JJ, Lytton WW, Xue JT, Uhlrich DJ. (1999). An intrinsic oscillation in interneurons of the rat lateral geniculate nucleus. Journal of neurophysiology. 81 [PubMed]

References and models that cite this paper

Cannon RC, O'Donnell C, Nolan MF. (2010). Stochastic ion channel gating in dendritic neurons: morphology dependence and probabilistic synaptic activation of dendritic spikes. PLoS computational biology. 6 [PubMed]

Carnevale NT, Morse TM. (1996). Research reports that have used NEURON Web published citations at the NEURON website.

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.