Ona-Jodar T, Gerkau NJ, Sara Aghvami S, Rose CR, Egger V. (2017). Two-Photon Na+ Imaging Reports Somatically Evoked Action Potentials in Rat Olfactory Bulb Mitral and Granule Cell Neurites. Frontiers in cellular neuroscience. 11 [PubMed]

See more from authors: Ona-Jodar T · Gerkau NJ · Sara Aghvami S · Rose CR · Egger V

References and models cited by this paper

Bender KJ, Trussell LO. (2009). Axon initial segment Ca2+ channels influence action potential generation and timing. Neuron. 61 [PubMed]

Burton SD, Urban NN. (2015). Rapid Feedforward Inhibition and Asynchronous Excitation Regulate Granule Cell Activity in the Mammalian Main Olfactory Bulb. The Journal of neuroscience : the official journal of the Society for Neuroscience. 35 [PubMed]

Bywalez WG et al. (2015). Local postsynaptic voltage-gated sodium channel activation in dendritic spines of olfactory bulb granule cells. Neuron. 85 [PubMed]

Chen WR, Midtgaard J, Shepherd GM. (1997). Forward and backward propagation of dendritic impulses and their synaptic control in mitral cells. Science (New York, N.Y.). 278 [PubMed]

Christie JM, Westbrook GL. (2003). Regulation of backpropagating action potentials in mitral cell lateral dendrites by A-type potassium currents. Journal of neurophysiology. 89 [PubMed]

Debarbieux F, Audinat E, Charpak S. (2003). Action potential propagation in dendrites of rat mitral cells in vivo. The Journal of neuroscience : the official journal of the Society for Neuroscience. 23 [PubMed]

Djurisic M, Antic S, Chen WR, Zecevic D. (2004). Voltage imaging from dendrites of mitral cells: EPSP attenuation and spike trigger zones. The Journal of neuroscience : the official journal of the Society for Neuroscience. 24 [PubMed]

Egger V. (2008). Synaptic sodium spikes trigger long-lasting depolarizations and slow calcium entry in rat olfactory bulb granule cells. The European journal of neuroscience. 27 [PubMed]

Egger V, Stroh O. (2009). Calcium buffering in rodent olfactory bulb granule cells and mitral cells. The Journal of physiology. 587 [PubMed]

Egger V, Svoboda K, Mainen ZF. (2003). Mechanisms of lateral inhibition in the olfactory bulb: efficiency and modulation of spike-evoked calcium influx into granule cells. The Journal of neuroscience : the official journal of the Society for Neuroscience. 23 [PubMed]

Fleidervish IA, Lasser-Ross N, Gutnick MJ, Ross WN. (2010). Na+ imaging reveals little difference in action potential-evoked Na+ influx between axon and soma. Nature neuroscience. 13 [PubMed]

Friedrich RW, Wiechert MT. (2014). Neuronal circuits and computations: pattern decorrelation in the olfactory bulb. FEBS letters. 588 [PubMed]

Fukunaga I, Berning M, Kollo M, Schmaltz A, Schaefer AT. (2012). Two distinct channels of olfactory bulb output. Neuron. 75 [PubMed]

Hines ML, Carnevale NT. (2006). The NEURON Book.

Hines ML, Davison AP, Muller E. (2009). NEURON and Python. Frontiers in neuroinformatics. 3 [PubMed]

Hu W et al. (2009). Distinct contributions of Na(v)1.6 and Na(v)1.2 in action potential initiation and backpropagation. Nature neuroscience. 12 [PubMed]

Igarashi KM et al. (2012). Parallel mitral and tufted cell pathways route distinct odor information to different targets in the olfactory cortex. The Journal of neuroscience : the official journal of the Society for Neuroscience. 32 [PubMed]

Jaffe DB et al. (1992). The spread of Na+ spikes determines the pattern of dendritic Ca2+ entry into hippocampal neurons. Nature. 357 [PubMed]

Karus C, Mondragão MA, Ziemens D, Rose CR. (2015). Astrocytes restrict discharge duration and neuronal sodium loads during recurrent network activity. Glia. 63 [PubMed]

Kim S, Guzman SJ, Hu H, Jonas P. (2012). Active dendrites support efficient initiation of dendritic spikes in hippocampal CA3 pyramidal neurons. Nature neuroscience. 15 [PubMed]

Kole MH et al. (2008). Action potential generation requires a high sodium channel density in the axon initial segment. Nature neuroscience. 11 [PubMed]

Labarrera C, London M, Angelo K. (2013). Tonic inhibition sets the state of excitability in olfactory bulb granule cells. The Journal of physiology. 591 [PubMed]

Langer J, Rose CR. (2009). Synaptically induced sodium signals in hippocampal astrocytes in situ. The Journal of physiology. 587 [PubMed]

Longair MH, Baker DA, Armstrong JD. (2011). Simple Neurite Tracer: open source software for reconstruction, visualization and analysis of neuronal processes. Bioinformatics (Oxford, England). 27 [PubMed]

Lorincz A, Nusser Z. (2010). Molecular identity of dendritic voltage-gated sodium channels. Science (New York, N.Y.). 328 [PubMed]

Luo M, Katz LC. (2001). Response correlation maps of neurons in the mammalian olfactory bulb. Neuron. 32 [PubMed]

Magee J. (2008). Dendritic voltage-gated channels Dendrites.

Manabe H, Mori K. (2013). Sniff rhythm-paced fast and slow gamma-oscillations in the olfactory bulb: relation to tufted and mitral cells and behavioral states. Journal of neurophysiology. 110 [PubMed]

Maravall M, Mainen ZF, Sabatini BL, Svoboda K. (2000). Estimating intracellular calcium concentrations and buffering without wavelength ratioing. Biophysical journal. 78 [PubMed]

Margrie TW, Sakmann B, Urban NN. (2001). Action potential propagation in mitral cell lateral dendrites is decremental and controls recurrent and lateral inhibition in the mammalian olfactory bulb. Proceedings of the National Academy of Sciences of the United States of America. 98 [PubMed]

Martina M, Vida I, Jonas P. (2000). Distal initiation and active propagation of action potentials in interneuron dendrites. Science (New York, N.Y.). 287 [PubMed]

Meier SD, Kovalchuk Y, Rose CR. (2006). Properties of the new fluorescent Na+ indicator CoroNa Green: comparison with SBFI and confocal Na+ imaging. Journal of neuroscience methods. 155 [PubMed]

Merkle FT et al. (2014). Adult neural stem cells in distinct microdomains generate previously unknown interneuron types. Nature neuroscience. 17 [PubMed]

Metsalu T, Vilo J. (2015). ClustVis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic acids research. 43 [PubMed]

Miyazaki K, Ross WN. (2015). Simultaneous Sodium and Calcium Imaging from Dendrites and Axons. eNeuro. 2 [PubMed]

Mondragão MA et al. (2016). Extrusion versus diffusion: mechanisms for recovery from sodium loads in mouse CA1 pyramidal neurons. The Journal of physiology. 594 [PubMed]

Mori K, Kishi K, Ojima H. (1983). Distribution of dendrites of mitral, displaced mitral, tufted, and granule cells in the rabbit olfactory bulb. The Journal of comparative neurology. 219 [PubMed]

Mori K, Takagi SF. (1978). An intracellular study of dendrodendritic inhibitory synapses on mitral cells in the rabbit olfactory bulb. The Journal of physiology. 279 [PubMed]

Nagayama S, Homma R, Imamura F. (2014). Neuronal organization of olfactory bulb circuits. Frontiers in neural circuits. 8 [PubMed]

Neher E, Augustine GJ. (1992). Calcium gradients and buffers in bovine chromaffin cells. The Journal of physiology. 450 [PubMed]

Orona E, Scott JW, Rainer EC. (1983). Different granule cell populations innervate superficial and deep regions of the external plexiform layer in rat olfactory bulb. The Journal of comparative neurology. 217 [PubMed]

Pinato G, Midtgaard J. (2005). Dendritic sodium spikelets and low-threshold calcium spikes in turtle olfactory bulb granule cells. Journal of neurophysiology. 93 [PubMed]

Price JL, Powell TP. (1970). The mitral and short axon cells of the olfactory bulb. Journal of cell science. 7 [PubMed]

Rose C, Schreiner A. (2012). Quantitative imaging in intracellular sodium Current Microscopy Contributions to Advances in Science and Technology.

Rose CR, Konnerth A. (2001). NMDA receptor-mediated Na+ signals in spines and dendrites. The Journal of neuroscience : the official journal of the Society for Neuroscience. 21 [PubMed]

Rose CR, Kovalchuk Y, Eilers J, Konnerth A. (1999). Two-photon Na+ imaging in spines and fine dendrites of central neurons. Pflugers Archiv : European journal of physiology. 439 [PubMed]

Rose CR, Ransom BR. (1996). Intracellular sodium homeostasis in rat hippocampal astrocytes. The Journal of physiology. 491 ( Pt 2) [PubMed]

Ross WN et al. (1993). Dendritic excitability in CNS neurons: insights from dynamic calcium and sodium imaging in single cells. The Japanese journal of physiology. 43 Suppl 1 [PubMed]

Sabatini BL, Maravall M, Svoboda K. (2001). Ca(2+) signaling in dendritic spines. Current opinion in neurobiology. 11 [PubMed]

Scott RS et al. (2014). Neuronal adaptation involves rapid expansion of the action potential initiation site. Nature communications. 5 [PubMed]

Shepherd G. (1990). The synaptic organization of the brain.

Wachowiak M, Shipley MT. (2006). Coding and synaptic processing of sensory information in the glomerular layer of the olfactory bulb. Seminars in cell & developmental biology. 17 [PubMed]

Wellis DP, Scott JW. (1990). Intracellular responses of identified rat olfactory bulb interneurons to electrical and odor stimulation. Journal of neurophysiology. 64 [PubMed]

Woolf TB, Shepherd GM, Greer CA. (1991). Serial reconstructions of granule cell spines in the mammalian olfactory bulb. Synapse (New York, N.Y.). 7 [PubMed]

Xiong W, Chen WR. (2002). Dynamic gating of spike propagation in the mitral cell lateral dendrites. Neuron. 34 [PubMed]

Yuste R, Majewska A, Holthoff K. (2000). From form to function: calcium compartmentalization in dendritic spines. Nature neuroscience. 3 [PubMed]

Zelles T, Boyd JD, Hardy AB, Delaney KR. (2006). Branch-specific Ca2+ influx from Na+-dependent dendritic spikes in olfactory granule cells. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]

Zylbertal A, Kahan A, Ben-Shaul Y, Yarom Y, Wagner S. (2015). Prolonged Intracellular Na+ Dynamics Govern Electrical Activity in Accessory Olfactory Bulb Mitral Cells. PLoS biology. 13 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.