Engel D, Goaillard JM, Tell F, Moubarak E, Tapia M, Dufour MA. (2019). Robustness to Axon Initial Segment Variation Is Explained by Somatodendritic Excitability in Rat Substantia Nigra Dopaminergic Neurons. J Neurosci 39 [PubMed]

See more from authors: Engel D · Goaillard JM · Tell F · Moubarak E · Tapia M · Dufour MA

References and models cited by this paper

Burrone J, Cattaert D, Wefelmeyer W. (2015). Activity-dependent mismatch between axo-axonic synapses and the axon initial segment controls neuronal output. Proc Natl Acad Sci U S A 112 [PubMed]

Fujimura K, Matsuda Y, Yoshida S. (1987). Two types of neurons in the substantia nigra pars compacta studied in a slice preparation. Neurosci Res 5 [PubMed]

Gentet LJ, Williams SR . (2007). Dopamine gates action potential backpropagation in midbrain dopaminergic neurons. J Neurosci 27 [PubMed]

González-Cabrera C, Meza R, Ulloa L, Merino-Sepúlveda P, Luco V, Sanhueza A, Oñate-Ponce A, Bolam JP, Henny P. (2017). Characterization of the axon initial segment of mice substantia nigra dopaminergic neurons. J Comp Neurol 525 [PubMed]

Grace AA, Bunney BS. (1983). Intracellular and extracellular electrophysiology of nigral dopaminergic neurons--2. Action potential generating mechanisms and morphological correlates. Neuroscience 10 [PubMed]

Grace AA, Bunney BS. (1984). The control of firing pattern in nigral dopamine neurons: single spike firing. J Neurosci 4 [PubMed]

Grace AA, Onn SP. (1989). Morphology and electrophysiological properties of immunocytochemically identified rat dopamine neurons recorded in vitro. J Neurosci 9 [PubMed]

Grossmann R, Wahle P, Schultz C, Engelhardt M, Gutzmann A, Ergül N. (2014). A period of structural plasticity at the axon initial segment in developing visual cortex. Front Neuroanat 8 [PubMed]

Grubb MS, Burrone J. (2010). Activity-dependent relocation of the axon initial segment fine-tunes neuronal excitability. Nature 465 [PubMed]

Gulledge AT, Bravo JJ. (2016). Neuron Morphology Influences Axon Initial Segment Plasticity. eNeuro 3 [PubMed]

Guzman JN, Sánchez-Padilla J, Chan CS, Surmeier DJ. (2009). Robust pacemaking in substantia nigra dopaminergic neurons. J Neurosci 29 [PubMed]

Hamada MS, Goethals S, de Vries SI, Brette R, Kole MH. (2016). Covariation of axon initial segment location and dendritic tree normalizes the somatic action potential. Proc Natl Acad Sci U S A 113 [PubMed]

Hay E, Schürmann F, Markram H, Segev I. (2013). Preserving axosomatic spiking features despite diverse dendritic morphology. J Neurophysiol 109 [PubMed]

Hesse J, Schreiber S. (2015). Externalization of neuronal somata as an evolutionary strategy for energy economization. Curr Biol 25 [PubMed]

Hines ML, Carnevale NT. (1997). The NEURON simulation environment. Neural Comput 9 [PubMed]

Hines ML, Carnevale NT. (2001). NEURON: a tool for neuroscientists. Neuroscientist 7 [PubMed]

Hu W, Tian C, Li T, Yang M, Hou H, Shu Y. (2009). Distinct contributions of Na(v)1.6 and Na(v)1.2 in action potential initiation and backpropagation. Nat Neurosci 12 [PubMed]

Häusser M, Stuart G, Racca C, Sakmann B. (1995). Axonal initiation and active dendritic propagation of action potentials in substantia nigra neurons. Neuron 15 [PubMed]

Jang J, Um KB, Jang M, Kim SH, Cho H, Chung S, Kim HJ, Park MK. (2014). Balance between the proximal dendritic compartment and the soma determines spontaneous firing rate in midbrain dopamine neurons. J Physiol 592 [PubMed]

Kole MH, Brette R. (2018). The electrical significance of axon location diversity. Curr Opin Neurobiol 51 [PubMed]

Kole MH, Ilschner SU, Kampa BM, Williams SR , Ruben PC, Stuart GJ. (2008). Action potential generation requires a high sodium channel density in the axon initial segment. Nat Neurosci 11 [PubMed]

Kole MH, Stuart GJ. (2012). Signal processing in the axon initial segment. Neuron 73 [PubMed]

Konishi S, Washio H, Takigachi-Hayashi K. (1999). Early postnatal development of substantia nigra neurons in rat midbrain slices: hyperpolarization-activated inward current and dopamine-activated current. Neurosci Res 34 [PubMed]

Kress GJ, Dowling MJ, Eisenman LN, Mennerick S. (2010). Axonal sodium channel distribution shapes the depolarized action potential threshold of dentate granule neurons. Hippocampus 20 [PubMed]

Kress GJ, Dowling MJ, Meeks JP, Mennerick S. (2008). High threshold, proximal initiation, and slow conduction velocity of action potentials in dentate granule neuron mossy fibers. J Neurophysiol 100 [PubMed]

Kuba H. (2012). Structural tuning and plasticity of the axon initial segment in auditory neurons. J Physiol 590 [PubMed]

Kuba H, Ishii TM, Ohmori H. (2006). Axonal site of spike initiation enhances auditory coincidence detection. Nature 444 [PubMed]

Kuznetsova AY, Huertas MA, Kuznetsov AS, Paladini CA, Canavier CC. (2010). Regulation of firing frequency in a computational model of a midbrain dopaminergic neuron. J Comput Neurosci 28 [PubMed]

Lezmy J, Lipinsky M, Khrapunsky Y, Patrich E, Shalom L, Peretz A, Fleidervish IA, Attali B. (2017). M-current inhibition rapidly induces a unique CK2-dependent plasticity of the axon initial segment. Proc Natl Acad Sci U S A 114 [PubMed]

Lien CC, Jonas P. (2003). Kv3 potassium conductance is necessary and kinetically optimized for high-frequency action potential generation in hippocampal interneurons. J Neurosci 23 [PubMed]

Lipski J, Freestone PS, Yee AG, Forbes B, Cheung PY, Martini A, Burrell MH. (2019). Action potential and calcium dependence of tonic somatodendritic dopamine release in the Substantia Nigra pars compacta. J Neurochem 148 [PubMed]

Liss B, Roeper J . (2008). Individual dopamine midbrain neurons: functional diversity and flexibility in health and disease. Brain Res Rev 58 [PubMed]

Longair MH, Baker DA, Armstrong JD. (2011). Simple Neurite Tracer: open source software for reconstruction, visualization and analysis of neuronal processes. Bioinformatics 27 [PubMed]

Lorincz A, Nusser Z. (2008). Cell-type-dependent molecular composition of the axon initial segment. J Neurosci 28 [PubMed]

Lorincz A, Nusser Z. (2010). Molecular identity of dendritic voltage-gated sodium channels. Science 328 [PubMed]

Mainen ZF, Carnevale NT, Zador AM, Claiborne BJ, Brown TH. (1996). Electrotonic architecture of hippocampal CA1 pyramidal neurons based on three-dimensional reconstructions. J Neurophysiol 76 [PubMed]

Mainen ZF, Sejnowski TJ. (1996). Influence of dendritic structure on firing pattern in model neocortical neurons. Nature 382 [PubMed]

Marder E, Otopalik AG, Sutton AC, Banghart M. (2017). When complex neuronal structures may not matter. Elife 6 [PubMed]

Martina M, Vida I, Jonas P. (2000). Distal initiation and active propagation of action potentials in interneuron dendrites. Science 287 [PubMed]

Matsuda W, Furuta T, Nakamura KC, Hioki H, Fujiyama F, Arai R, Kaneko T. (2009). Single nigrostriatal dopaminergic neurons form widely spread and highly dense axonal arborizations in the neostriatum. J Neurosci 29 [PubMed]

Meeks JP, Mennerick S. (2007). Action potential initiation and propagation in CA3 pyramidal axons. J Neurophysiol 97 [PubMed]

Meza RC, López-Jury L, Canavier CC, Henny P. (2018). Role of the Axon Initial Segment in the Control of Spontaneous Frequency of Nigral Dopaminergic Neurons In Vivo. J Neurosci 38 [PubMed]

Migliore M, Cannia C, Canavier CC. (2008). A modeling study suggesting a possible pharmacological target to mitigate the effects of ethanol on reward-related dopaminergic signaling. J Neurophysiol 99 [PubMed]

Niven JE. (2015). Neural Evolution: Marginal Gains through Soma Location. Curr Biol 25 [PubMed]

Ohmori H, Kuba H, Adachi R. (2014). Activity-dependent and activity-independent development of the axon initial segment. J Neurosci 34 [PubMed]

Otopalik AG, Goeritz ML, Sutton AC, Brookings T, Guerini C, Marder E. (2017). Sloppy morphological tuning in identified neurons of the crustacean stomatogastric ganglion. Elife 6 [PubMed]

Palmer LM, Stuart GJ. (2006). Site of action potential initiation in layer 5 pyramidal neurons. J Neurosci 26 [PubMed]

Parent A, Prensa L. (2001). The nigrostriatal pathway in the rat: A single-axon study of the relationship between dorsal and ventral tier nigral neurons and the striosome/matrix striatal compartments. J Neurosci 21 [PubMed]

Platkiewicz J, Brette R. (2010). A threshold equation for action potential initiation. PLoS Comput Biol 6 [PubMed]

Puopolo M, Raviola E, Bean BP. (2007). Roles of subthreshold calcium current and sodium current in spontaneous firing of mouse midbrain dopamine neurons. J Neurosci 27 [PubMed]

Putzier I, Kullmann PH, Horn JP, Levitan ES. (2009). Dopamine neuron responses depend exponentially on pacemaker interval. J Neurophysiol 101 [PubMed]

Rasband MN. (2010). The axon initial segment and the maintenance of neuronal polarity. Nat Rev Neurosci 11 [PubMed]

Rueden CT, Schindelin J, Hiner MC, DeZonia BE, Walter AE, Arena ET, Eliceiri KW. (2017). ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinformatics 18 [PubMed]

Sakmann B, Neher E. (1995). Single-channel Recording 2

Schild JH, Khushalani S, Clark JW, Andresen MC, Kunze DL, Yang M. (1993). An ionic current model for neurons in the rat medial nucleus tractus solitarii receiving sensory afferent input. J Physiol 469 [PubMed]

Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A. (2012). Fiji: an open-source platform for biological-image analysis. Nat Methods 9 [PubMed]

Schneider CA, Rasband WS, Eliceiri KW. (2012). NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9 [PubMed]

Scott RS, Henneberger C, Padmashri R, Anders S, Jensen TP, Rusakov DA. (2014). Neuronal adaptation involves rapid expansion of the action potential initiation site. Nat Commun 5 [PubMed]

Seutin V, Engel D. (2010). Differences in Na+ conductance density and Na+ channel functional properties between dopamine and GABA neurons of the rat substantia nigra. J Neurophysiol 103 [PubMed]

Tepper JM, Trent F, Damlama M. (1994). Postnatal changes in the distribution and morphology of rat substantia nigra dopaminergic neurons. Neuroscience 60 [PubMed]

Thome C, Kelly T, Yanez A, Schultz C, Engelhardt M, Cambridge SB, Both M, Draguhn A, Beck H, Egorov AV. (2014). Axon-carrying dendrites convey privileged synaptic input in hippocampal neurons. Neuron 83 [PubMed]

Tucker KR, Huertas MA, Horn JP, Canavier CC, Levitan ES. (2012). Pacemaker rate and depolarization block in nigral dopamine neurons: a somatic sodium channel balancing act. J Neurosci 32 [PubMed]

Van Ooyen A, Duijnhouwer J, Remme MW, Van Pelt J. (2002). The effect of dendritic topology on firing patterns in model neurons. Network 13 [PubMed]

Van Wart A, Trimmer JS, Matthews G. (2007). Polarized distribution of ion channels within microdomains of the axon initial segment. J Comp Neurol 500 [PubMed]

Venance L, Glowinski J, Deniau JM, Vandecasteele M. (2008). Chemical transmission between dopaminergic neuron pairs. Proc Natl Acad Sci U S A 105 [PubMed]

Vetter P, Roth A, Häusser M. (2001). Propagation of action potentials in dendrites depends on dendritic morphology. J Neurophysiol 85 [PubMed]

Weaver CM, Wearne SL. (2008). Neuronal firing sensitivity to morphologic and active membrane parameters. PLoS Comput Biol 4 [PubMed]

Williams JT, Ford CP, Morikawa H, Gantz SC. (2018). The Evolving Understanding of Dopamine Neurons in the Substantia Nigra and Ventral Tegmental Area. Annu Rev Physiol 80 [PubMed]

Wilson CJ, Callaway JC. (2000). Coupled oscillator model of the dopaminergic neuron of the substantia nigra. J Neurophysiol 83 [PubMed]

Zhou D, Lambert S, Malen PL, Carpenter S, Boland LM, Bennett V. (1998). AnkyrinG is required for clustering of voltage-gated Na channels at axon initial segments and for normal action potential firing. J Cell Biol 143 [PubMed]

References and models that cite this paper

Rumbell T, Kozloski J. (2019). Dimensions of control for subthreshold oscillations and spontaneous firing in dopamine neurons PLOS Computational Biology 15