Otis TS, De Koninck Y, Mody I. (1993). Characterization of synaptically elicited GABAB responses using patch-clamp recordings in rat hippocampal slices. The Journal of physiology. 463 [PubMed]

See more from authors: Otis TS · De Koninck Y · Mody I

References and models cited by this paper
References and models that cite this paper

Banitt Y, Martin KA, Segev I. (2005). Depressed responses of facilitatory synapses. Journal of neurophysiology. 94 [PubMed]

Birdno MJ et al. (2012). Stimulus features underlying reduced tremor suppression with temporally patterned deep brain stimulation. Journal of neurophysiology. 107 [PubMed]

Conde-Sousa E, Aguiar P. (2013). A working memory model for serial order that stores information in the intrinsic excitability properties of neurons. Journal of computational neuroscience. 35 [PubMed]

Destexhe A, Bal T, McCormick DA, Sejnowski TJ. (1996). Ionic mechanisms underlying synchronized oscillations and propagating waves in a model of ferret thalamic slices. Journal of neurophysiology. 76 [PubMed]

Destexhe A, Contreras D, Sejnowski TJ, Steriade M. (1994). A model of spindle rhythmicity in the isolated thalamic reticular nucleus. Journal of neurophysiology. 72 [PubMed]

Destexhe A, Contreras D, Steriade M. (1998). Mechanisms underlying the synchronizing action of corticothalamic feedback through inhibition of thalamic relay cells. Journal of neurophysiology. 79 [PubMed]

Destexhe A, Mainen ZF, Sejnowski TJ. (1994). Synthesis of models for excitable membranes, synaptic transmission and neuromodulation using a common kinetic formalism. Journal of computational neuroscience. 1 [PubMed]

Destexhe A, McCormick DA, Sejnowski TJ. (1993). A model for 8-10 Hz spindling in interconnected thalamic relay and reticularis neurons. Biophysical journal. 65 [PubMed]

Destexhe A, Sejnowski T, Mainen Z. (1995). Fast Kinetic Models for Simulating AMPA, NMDA, GABAA and GABAB Receptors The Neurobiology of Computation.

Destexhe A, Sejnowski TJ. (1995). G protein activation kinetics and spillover of gamma-aminobutyric acid may account for differences between inhibitory responses in the hippocampus and thalamus. Proceedings of the National Academy of Sciences of the United States of America. 92 [PubMed]

Doyon N et al. (2011). Efficacy of synaptic inhibition depends on multiple, dynamically interacting mechanisms implicated in chloride homeostasis. PLoS computational biology. 7 [PubMed]

Hall S et al. (2015). Unbalanced Peptidergic Inhibition in Superficial Neocortex Underlies Spike and Wave Seizure Activity. The Journal of neuroscience : the official journal of the Society for Neuroscience. 35 [PubMed]

Hill S, Tononi G. (2005). Modeling sleep and wakefulness in the thalamocortical system. Journal of neurophysiology. 93 [PubMed]

Holmes WR, Ambros-Ingerson J, Grover LM. (2006). Fitting experimental data to models that use morphological data from public databases. Journal of computational neuroscience. 20 [PubMed]

Holmes WR, Grover LM. (2006). Quantifying the magnitude of changes in synaptic level parameters with long-term potentiation. Journal of neurophysiology. 96 [PubMed]

Khatri SN, Wu WC, Yang Y, Pugh JR. (2019). Mechanisms of GABAB receptor enhancement of extrasynaptic GABAA receptor currents in cerebellar granule cells. Scientific reports. 9 [PubMed]

Kim Y, Hsu CL, Cembrowski MS, Mensh BD, Spruston N. (2015). Dendritic sodium spikes are required for long-term potentiation at distal synapses on hippocampal pyramidal neurons. eLife. 4 [PubMed]

Sohal VS, Huguenard JR. (1998). Long-range connections synchronize rather than spread intrathalamic oscillations: computational modeling and in vitro electrophysiology. Journal of neurophysiology. 80 [PubMed]

Taylor PN, Baier G. (2011). A spatially extended model for macroscopic spike-wave discharges. Journal of computational neuroscience. 31 [PubMed]

Thomson AM, Destexhe A. (1999). Dual intracellular recordings and computational models of slow inhibitory postsynaptic potentials in rat neocortical and hippocampal slices. Neuroscience. 92 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.