Miller RF, Staff NP, Velte TJ. (2006). Form and function of ON-OFF amacrine cells in the amphibian retina. Journal of neurophysiology. 95 [PubMed]

See more from authors: Miller RF · Staff NP · Velte TJ

References and models cited by this paper

Arkin MS, Miller RF. (1988). Synaptic inputs and morphology of sustained ON-ganglion cells in the mudpuppy retina. Journal of neurophysiology. 60 [PubMed]

Barnes S, Werblin F. (1987). Direct excitatory and lateral inhibitory synaptic inputs to amacrine cells in the tiger salamander retina. Brain research. 406 [PubMed]

Belgum JH, Dvorak DR, McReynolds JS. (1984). Strychnine blocks transient but not sustained inhibition in mudpuppy retinal ganglion cells. The Journal of physiology. 354 [PubMed]

Bloomfield SA. (1996). Effect of spike blockade on the receptive-field size of amacrine and ganglion cells in the rabbit retina. Journal of neurophysiology. 75 [PubMed]

Burkhardt DA, Fahey PK. (1999). Contrast rectification and distributed encoding By ON-OFF amacrine cells in the retina. Journal of neurophysiology. 82 [PubMed]

Burrone J, Lagnado L. (1997). Electrical resonance and Ca2+ influx in the synaptic terminal of depolarizing bipolar cells from the goldfish retina. The Journal of physiology. 505 ( Pt 3) [PubMed]

Casini G, Rickman DW, Brecha NC. (1995). AII amacrine cell population in the rabbit retina: identification by parvalbumin immunoreactivity. The Journal of comparative neurology. 356 [PubMed]

Coleman PA, Miller RF. (1989). Measurement of passive membrane parameters with whole-cell recording from neurons in the intact amphibian retina. Journal of neurophysiology. 61 [PubMed]

Cook PB, Lukasiewicz PD, McReynolds JS. (1998). Action potentials are required for the lateral transmission of glycinergic transient inhibition in the amphibian retina. The Journal of neuroscience : the official journal of the Society for Neuroscience. 18 [PubMed]

Cook PB, Werblin FS. (1994). Spike initiation and propagation in wide field transient amacrine cells of the salamander retina. The Journal of neuroscience : the official journal of the Society for Neuroscience. 14 [PubMed]

Cuenca N, Kolb H. (1998). Circuitry and role of substance P-immunoreactive neurons in the primate retina. The Journal of comparative neurology. 393 [PubMed]

Dacheux RF, Raviola E. (1995). Light responses from one type of ON-OFF amacrine cells in the rabbit retina. Journal of neurophysiology. 74 [PubMed]

Deng P et al. (2001). Localization of neurotransmitters and calcium binding proteins to neurons of salamander and mudpuppy retinas. Vision research. 41 [PubMed]

Dixon DB, Copenhagen DR. (1992). Two types of glutamate receptors differentially excite amacrine cells in the tiger salamander retina. The Journal of physiology. 449 [PubMed]

Eliasof S, Barnes S, Werblin F. (1987). The interaction of ionic currents mediating single spike activity in retinal amacrine cells of the tiger salamander. The Journal of neuroscience : the official journal of the Society for Neuroscience. 7 [PubMed]

Famiglietti EV. (1992). Polyaxonal amacrine cells of rabbit retina: morphology and stratification of PA1 cells. The Journal of comparative neurology. 316 [PubMed]

Famiglietti EV. (1992). Polyaxonal amacrine cells of rabbit retina: PA2, PA3, and PA4 cells. Light and electron microscopic studies with a functional interpretation. The Journal of comparative neurology. 316 [PubMed]

Feigenspan A, Gustincich S, Bean BP, Raviola E. (1998). Spontaneous activity of solitary dopaminergic cells of the retina. The Journal of neuroscience : the official journal of the Society for Neuroscience. 18 [PubMed]

Fohlmeister JF, Coleman PA, Miller RF. (1990). Modeling the repetitive firing of retinal ganglion cells. Brain research. 510 [PubMed]

Fohlmeister JF, Miller RF. (1997). Mechanisms by which cell geometry controls repetitive impulse firing in retinal ganglion cells. Journal of neurophysiology. 78 [PubMed]

Fohlmeister JF, Miller RF. (1997). Impulse encoding mechanisms of ganglion cells in the tiger salamander retina. Journal of neurophysiology. 78 [PubMed]

Freed MA, Pflug R, Kolb H, Nelson R. (1996). ON-OFF amacrine cells in cat retina. The Journal of comparative neurology. 364 [PubMed]

Fried SI, Münch TA, Werblin FS. (2002). Mechanisms and circuitry underlying directional selectivity in the retina. Nature. 420 [PubMed]

Hines M. (1993). NEURON--a program for simulation of nerve equations. Neural Systems: Analysis And Modeling.

Ichinose T, Shields CR, Lukasiewicz PD. (2005). Sodium channels in transient retinal bipolar cells enhance visual responses in ganglion cells. The Journal of neuroscience : the official journal of the Society for Neuroscience. 25 [PubMed]

Kaneko A. (1970). Physiological and morphological identification of horizontal, bipolar and amacrine cells in goldfish retina. The Journal of physiology. 207 [PubMed]

Karwoski CJ, Brukhardt DA. (1976). Ganglion cell responses of the mudpuppy retina to flashing and moving stimuli. Vision research. 16 [PubMed]

Mainen ZF, Sejnowski TJ. (1996). Influence of dendritic structure on firing pattern in model neocortical neurons. Nature. 382 [PubMed]

Marchiafava PL, Weiler R. (1982). The photoresponses of structurally identified amacrine cells in the turtle retina. Proceedings of the Royal Society of London. Series B, Biological sciences. 214 [PubMed]

Miller JP, Rall W, Rinzel J. (1985). Synaptic amplification by active membrane in dendritic spines. Brain research. 325 [PubMed]

Miller RF. (1979). The neuronal basis of ganglion cell receptive field organization and the physiology of amacrine cells The Neuroscience, Fourth Study Program.

Miller RF, Bloomfield SA. (1983). Electroanatomy of a unique amacrine cell in the rabbit retina. Proceedings of the National Academy of Sciences of the United States of America. 80 [PubMed]

Miller RF, Dacheux R. (1976). Dendritic and somatic spikes in mudpuppy amacrine cells: indentification and TTX sensitivity. Brain research. 104 [PubMed]

Miller RF, Dacheux RF. (1976). Synaptic organization and ionic basis of on and off channels in mudpuppy retina. I. Intracellular analysis of chloride-sensitive electrogenic properties of receptors, horizontal cells, bipolar cells, and amacrine cells. The Journal of general physiology. 67 [PubMed]

Miller RF, Dacheux RF. (1976). Synaptic organization and ionic basis of on and off channels in mudpuppy retina. II. Chloride-dependent ganglion cell mechanisms. The Journal of general physiology. 67 [PubMed]

Miller RF, Dacheux RF, Frumkes TE. (1977). Amacrine cells in Necturus retina: evidence for independent gamma-aminobutyric acid- and glycine-releasing neurons. Science (New York, N.Y.). 198 [PubMed]

Miller RF et al. (2001). Structure and functional connections of presynaptic terminals in the vertebrate retina revealed by activity-dependent dyes and confocal microscopy. The Journal of comparative neurology. 437 [PubMed]

Miller RF, Frumkes TE, Slaughter M, Dacheux RF. (1981). Physiological and pharmacological basis of GABA and glycine action on neurons of mudpuppy retina. II. Amacrine and ganglion cells. Journal of neurophysiology. 45 [PubMed]

Miller RF, Stenback K, Henderson D, Sikora M. (2002). How voltage-gated ion channels alter the functional properties of ganglion and amacrine cell dendrites. Archives italiennes de biologie. 140 [PubMed]

Nimchinsky EA, Sabatini BL, Svoboda K. (2002). Structure and function of dendritic spines. Annual review of physiology. 64 [PubMed]

Pang JJ, Gao F, Wu SM. (2002). Segregation and integration of visual channels: layer-by-layer computation of ON-OFF signals by amacrine cell dendrites. The Journal of neuroscience : the official journal of the Society for Neuroscience. 22 [PubMed]

Protti DA, Flores-Herr N, von Gersdorff H. (2000). Light evokes Ca2+ spikes in the axon terminal of a retinal bipolar cell. Neuron. 25 [PubMed]

SHOLL DA. (1953). Dendritic organization in the neurons of the visual and motor cortices of the cat. Journal of anatomy. 87 [PubMed]

Segev I, Rall W. (1988). Computational study of an excitable dendritic spine. Journal of neurophysiology. 60 [PubMed]

Shi SH et al. (1999). Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. Science (New York, N.Y.). 284 [PubMed]

Shields CR, Lukasiewicz PD. (2003). Spike-dependent GABA inputs to bipolar cell axon terminals contribute to lateral inhibition of retinal ganglion cells. Journal of neurophysiology. 89 [PubMed]

Sikora MA, Gottesman J, Miller RF. (2005). A computational model of the ribbon synapse. Journal of neuroscience methods. 145 [PubMed]

Stafford DK, Dacey DM. (1997). Physiology of the A1 amacrine: a spiking, axon-bearing interneuron of the macaque monkey retina. Visual neuroscience. 14 [PubMed]

Taylor WR. (1999). TTX attenuates surround inhibition in rabbit retinal ganglion cells. Visual neuroscience. 16 [PubMed]

Teranishi T, Negishi K. (1991). Dendritic morphology of a class of interstitial and normally placed amacrine cells revealed by intracellular Lucifer yellow injection in carp retina. Vision research. 31 [PubMed]

Toris CB, Eiesland JL, Miller RF. (1995). Morphology of ganglion cells in the neotenous tiger salamander retina. The Journal of comparative neurology. 352 [PubMed]

Vallerga S. (1981). Physiological and morphological identification of amacrine cells in the retina of the larval tiger salamander. Vision research. 21 [PubMed]

Velte TJ, Masland RH. (1999). Action potentials in the dendrites of retinal ganglion cells. Journal of neurophysiology. 81 [PubMed]

Velte TJ, Miller RF. (1996). Computer simulations of voltage clamping retinal ganglion cells through whole-cell electrodes in the soma. Journal of neurophysiology. 75 [PubMed]

Velte TJ, Miller RF. (1997). Spiking and nonspiking models of starburst amacrine cells in the rabbit retina. Visual neuroscience. 14 [PubMed]

Velte TJ, Miller RF. (2003). Dendritic integration in ganglion cells of the mudpuppy retina. Vis Neurosci. 12

Velte TJ, Yu W, Miller RF. (1997). Estimating the contributions of NMDA and non-NMDA currents to EPSPs in retinal ganglion cells. Visual neuroscience. 14 [PubMed]

Völgyi B, Xin D, Amarillo Y, Bloomfield SA. (2001). Morphology and physiology of the polyaxonal amacrine cells in the rabbit retina. The Journal of comparative neurology. 440 [PubMed]

Werblin FS. (1977). Regenerative amacrine cell depolarization and formation of on-off ganglion cell response. The Journal of physiology. 264 [PubMed]

Werblin FS, Dowling JE. (1969). Organization of the retina of the mudpuppy, Necturus maculosus. II. Intracellular recording. Journal of neurophysiology. 32 [PubMed]

Wong RO, Collin SP. (1989). Dendritic maturation of displaced putative cholinergic amacrine cells in the rabbit retina. The Journal of comparative neurology. 287 [PubMed]

Wong-Riley MT. (1974). Synaptic orgnization of the inner plexiform layer in the retina of the tiger salamander. Journal of neurocytology. 3 [PubMed]

Yang CY, Lukasiewicz P, Maguire G, Werblin FS, Yazulla S. (1991). Amacrine cells in the tiger salamander retina: morphology, physiology, and neurotransmitter identification. The Journal of comparative neurology. 312 [PubMed]

Yang XL, Gao F, Wu SM. (2002). Non-linear, high-gain and sustained-to-transient signal transmission from rods to amacrine cells in dark-adapted retina of Ambystoma. The Journal of physiology. 539 [PubMed]

Yang XL, Wu SM. (2004). Signal transmission from cones to amacrine cells in dark- and light-adapted tiger salamander retina. Brain research. 1029 [PubMed]

Zenisek D, Matthews G. (1998). Calcium action potentials in retinal bipolar neurons. Visual neuroscience. 15 [PubMed]

Zhang J, Wu SM. (2001). Immunocytochemical analysis of cholinergic amacrine cells in the tiger salamander retina. Neuroreport. 12 [PubMed]

References and models that cite this paper
This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.