Nieus T et al. (2006). LTP regulates burst initiation and frequency at mossy fiber-granule cell synapses of rat cerebellum: experimental observations and theoretical predictions. Journal of neurophysiology. 95 [PubMed]

See more from authors: Nieus T · Sola E · Mapelli J · Saftenku E · Rossi P · D'Angelo E

References and models cited by this paper

Albus JS. (1971). A theory of cerebellar function Math Biosci. 10

Armano S, Rossi P, Taglietti V, D'Angelo E. (2000). Long-term potentiation of intrinsic excitability at the mossy fiber-granule cell synapse of rat cerebellum. The Journal of neuroscience : the official journal of the Society for Neuroscience. 20 [PubMed]

Barbour B. (2001). An evaluation of synapse independence. The Journal of neuroscience : the official journal of the Society for Neuroscience. 21 [PubMed]

Bliss TV, Collingridge GL, Morris RG. (2003). Introduction. Long-term potentiation and structure of the issue. Philosophical transactions of the Royal Society of London. Series B, Biological sciences. 358 [PubMed]

Braitenberg V. (1967). Is the cerebellar cortex a biological clock in the millisecond range? Progress in brain research. 25 [PubMed]

Brenowitz S, Trussell LO. (2001). Minimizing synaptic depression by control of release probability. The Journal of neuroscience : the official journal of the Society for Neuroscience. 21 [PubMed]

Buonomano DV. (2000). Decoding temporal information: A model based on short-term synaptic plasticity. The Journal of neuroscience : the official journal of the Society for Neuroscience. 20 [PubMed]

Bureau I, Dieudonne S, Coussen F, Mulle C. (2000). Kainate receptor-mediated synaptic currents in cerebellar Golgi cells are not shaped by diffusion of glutamate. Proceedings of the National Academy of Sciences of the United States of America. 97 [PubMed]

Carey M, Lisberger S. (2002). Embarrassed, but not depressed: eye opening lessons for cerebellar learning. Neuron. 35 [PubMed]

Carter AG, Regehr WG. (2000). Prolonged synaptic currents and glutamate spillover at the parallel fiber to stellate cell synapse. The Journal of neuroscience : the official journal of the Society for Neuroscience. 20 [PubMed]

Casado M, Isope P, Ascher P. (2002). Involvement of presynaptic N-methyl-D-aspartate receptors in cerebellar long-term depression. Neuron. 33 [PubMed]

Cathala L, Brickley S, Cull-Candy S, Farrant M. (2003). Maturation of EPSCs and intrinsic membrane properties enhances precision at a cerebellar synapse. The Journal of neuroscience : the official journal of the Society for Neuroscience. 23 [PubMed]

Chadderton P, Margrie TW, Häusser M. (2004). Integration of quanta in cerebellar granule cells during sensory processing. Nature. 428 [PubMed]

Coesmans M, Weber JT, De Zeeuw CI, Hansel C. (2004). Bidirectional parallel fiber plasticity in the cerebellum under climbing fiber control. Neuron. 44 [PubMed]

Crank J. (1975). The Mathematics of Diffusion (2nd edn).

D'Angelo E, De Filippi G, Rossi P, Taglietti V. (1995). Synaptic excitation of individual rat cerebellar granule cells in situ: evidence for the role of NMDA receptors. The Journal of physiology. 484 ( Pt 2) [PubMed]

D'Angelo E et al. (2001). Theta-frequency bursting and resonance in cerebellar granule cells: experimental evidence and modeling of a slow k+-dependent mechanism. The Journal of neuroscience : the official journal of the Society for Neuroscience. 21 [PubMed]

D'Angelo E, Rossi P, Armano S, Taglietti V. (1999). Evidence for NMDA and mGlu receptor-dependent long-term potentiation of mossy fiber-granule cell transmission in rat cerebellum. Journal of neurophysiology. 81 [PubMed]

D'Angelo E, Rossi P, Taglietti V. (1994). Voltage-dependent kinetics of N-methyl-D-aspartate synaptic currents in rat cerebellar granule cells. The European journal of neuroscience. 6 [PubMed]

De Schutter E, Bjaalie JG. (2001). Coding in the granular layer of the cerebellum. Progress in brain research. 130 [PubMed]

Debanne D, Daoudal G, Sourdet V, Russier M. (2003). Brain plasticity and ion channels. Journal of physiology, Paris. 97 [PubMed]

Destexhe A, Mainen ZF, Sejnowski TJ. (1994). Synthesis of models for excitable membranes, synaptic transmission and neuromodulation using a common kinetic formalism. Journal of computational neuroscience. 1 [PubMed]

DiGregorio DA, Nusser Z, Silver RA. (2002). Spillover of glutamate onto synaptic AMPA receptors enhances fast transmission at a cerebellar synapse. Neuron. 35 [PubMed]

Diamond JS, Jahr CE. (1997). Transporters buffer synaptically released glutamate on a submillisecond time scale. The Journal of neuroscience : the official journal of the Society for Neuroscience. 17 [PubMed]

Dittman JS, Kreitzer AC, Regehr WG. (2000). Interplay between facilitation, depression, and residual calcium at three presynaptic terminals. The Journal of neuroscience : the official journal of the Society for Neuroscience. 20 [PubMed]

Dodge FA, Rahamimoff R. (1967). Co-operative action a calcium ions in transmitter release at the neuromuscular junction. The Journal of physiology. 193 [PubMed]

Gall D et al. (2005). Intracellular calcium regulation by burst discharge determines bidirectional long-term synaptic plasticity at the cerebellum input stage. The Journal of neuroscience : the official journal of the Society for Neuroscience. 25 [PubMed]

Gupta A, Wang Y, Markram H. (2000). Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. Science (New York, N.Y.). 287 [PubMed]

Han VZ, Grant K, Bell CC. (2000). Reversible associative depression and nonassociative potentiation at a parallel fiber synapse. Neuron. 27 [PubMed]

Hansel C, Linden DJ, D'Angelo E. (2001). Beyond parallel fiber LTD: the diversity of synaptic and non-synaptic plasticity in the cerebellum. Nature neuroscience. 4 [PubMed]

Hines ML, Carnevale NT. (2001). NEURON: a tool for neuroscientists. The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry. 7 [PubMed]

Ito M, Eccles JC, Szentagothai J. (1967). The Cerebellum as a Computational Machine.

Jakab RL, Hámori J. (1988). Quantitative morphology and synaptology of cerebellar glomeruli in the rat. Anatomy and embryology. 179 [PubMed]

Kase M, Miller DC, Noda H. (1980). Discharges of Purkinje cells and mossy fibres in the cerebellar vermis of the monkey during saccadic eye movements and fixation. The Journal of physiology. 300 [PubMed]

Katz B, Miledi R. (1968). The role of calcium in neuromuscular facilitation. The Journal of physiology. 195 [PubMed]

Koekkoek SK, Den Ouden WL, Perry G, Highstein SM, De Zeeuw CI. (2002). Monitoring kinetic and frequency-domain properties of eyelid responses in mice with magnetic distance measurement technique. Journal of neurophysiology. 88 [PubMed]

Krahe R, Gabbiani F. (2004). Burst firing in sensory systems. Nature reviews. Neuroscience. 5 [PubMed]

Kullmann DM, Erdemli G, Asztély F. (1996). LTP of AMPA and NMDA receptor-mediated signals: evidence for presynaptic expression and extrasynaptic glutamate spill-over. Neuron. 17 [PubMed]

Lisman J. (2003). Long-term potentiation: outstanding questions and attempted synthesis. Philosophical transactions of the Royal Society of London. Series B, Biological sciences. 358 [PubMed]

Lisman JE. (1997). Bursts as a unit of neural information: making unreliable synapses reliable. Trends in neurosciences. 20 [PubMed]

Maffei A et al. (2003). NO enhances presynaptic currents during cerebellar mossy fiber-granule cell LTP. Journal of neurophysiology. 90 [PubMed]

Mainen ZF, Malinow R, Svoboda K. (1999). Synaptic calcium transients in single spines indicate that NMDA receptors are not saturated. Nature. 399 [PubMed]

Malenka RC, Nicoll RA. (1999). Long-term potentiation--a decade of progress? Science (New York, N.Y.). 285 [PubMed]

McAllister AK, Stevens CF. (2000). Nonsaturation of AMPA and NMDA receptors at hippocampal synapses. Proceedings of the National Academy of Sciences of the United States of America. 97 [PubMed]

Medina JF, Mauk MD. (2000). Computer simulation of cerebellar information processing. Nature neuroscience. 3 Suppl [PubMed]

Mitchell SJ, Silver RA. (2003). Shunting inhibition modulates neuronal gain during synaptic excitation. Neuron. 38 [PubMed]

Neher E, Sakaba T. (2001). Estimating transmitter release rates from postsynaptic current fluctuations. The Journal of neuroscience : the official journal of the Society for Neuroscience. 21 [PubMed]

Nielsen TA, DiGregorio DA, Silver RA. (2004). Modulation of glutamate mobility reveals the mechanism underlying slow-rising AMPAR EPSCs and the diffusion coefficient in the synaptic cleft. Neuron. 42 [PubMed]

O'Donovan MJ, Rinzel J. (1997). Synaptic depression: a dynamic regulator of synaptic communication with varied functional roles. Trends in neurosciences. 20 [PubMed]

Overstreet LS, Kinney GA, Liu YB, Billups D, Slater NT. (1999). Glutamate transporters contribute to the time course of synaptic transmission in cerebellar granule cells. The Journal of neuroscience : the official journal of the Society for Neuroscience. 19 [PubMed]

Raman IM, Trussell LO. (1995). The mechanism of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptor desensitization after removal of glutamate. Biophysical journal. 68 [PubMed]

Rieke F, Warland D, de Ruyter van Steveninck, R, Bialek B. (1997). Spikes: Exploring The Neural Code.

Rosenmund C, Feltz A, Westbrook GL. (1995). Synaptic NMDA receptor channels have a low open probability. The Journal of neuroscience : the official journal of the Society for Neuroscience. 15 [PubMed]

Rossi P et al. (2002). NMDA receptor 2 (NR2) C-terminal control of NR open probability regulates synaptic transmission and plasticity at a cerebellar synapse. The Journal of neuroscience : the official journal of the Society for Neuroscience. 22 [PubMed]

Saftenku EE. (2005). Modeling of slow glutamate diffusion and AMPA receptor activation in the cerebellar glomerulus. Journal of theoretical biology. 234 [PubMed]

Selig DK, Nicoll RA, Malenka RC. (1999). Hippocampal long-term potentiation preserves the fidelity of postsynaptic responses to presynaptic bursts. The Journal of neuroscience : the official journal of the Society for Neuroscience. 19 [PubMed]

Silver RA, Colquhoun D, Cull-Candy SG, Edmonds B. (1996). Deactivation and desensitization of non-NMDA receptors in patches and the time course of EPSCs in rat cerebellar granule cells. The Journal of physiology. 493 ( Pt 1) [PubMed]

Silver RA, Cull-Candy SG, Takahashi T. (1996). Non-NMDA glutamate receptor occupancy and open probability at a rat cerebellar synapse with single and multiple release sites. The Journal of physiology. 494 ( Pt 1) [PubMed]

Sola E, Prestori F, Rossi P, Taglietti V, D'Angelo E. (2004). Increased neurotransmitter release during long-term potentiation at mossy fibre-granule cell synapses in rat cerebellum. The Journal of physiology. 557 [PubMed]

Traynelis SF, Silver RA, Cull-Candy SG. (1993). Estimated conductance of glutamate receptor channels activated during EPSCs at the cerebellar mossy fiber-granule cell synapse. Neuron. 11 [PubMed]

Tsodyks M, Uziel A, Markram H. (2000). Synchrony generation in recurrent networks with frequency-dependent synapses. The Journal of neuroscience : the official journal of the Society for Neuroscience. 20 [PubMed]

Tsodyks MV, Markram H. (1997). The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. Proceedings of the National Academy of Sciences of the United States of America. 94 [PubMed]

Wadiche JI, Jahr CE. (2001). Multivesicular release at climbing fiber-Purkinje cell synapses. Neuron. 32 [PubMed]

Wang SS, Denk W, Häusser M. (2000). Coincidence detection in single dendritic spines mediated by calcium release. Nature neuroscience. 3 [PubMed]

Watanabe D, Nakanishi S. (2003). mGluR2 postsynaptically senses granule cell inputs at Golgi cell synapses. Neuron. 39 [PubMed]

Xu-Friedman MA, Regehr WG. (2003). Ultrastructural contributions to desensitization at cerebellar mossy fiber to granule cell synapses. The Journal of neuroscience : the official journal of the Society for Neuroscience. 23 [PubMed]

van Alphen AM, De Zeeuw CI. (2002). Cerebellar LTD facilitates but is not essential for long-term adaptation of the vestibulo-ocular reflex. The European journal of neuroscience. 16 [PubMed]

References and models that cite this paper

Carrillo RR, Ros E, Tolu S, Nieus T, D'Angelo E. (2008). Event-driven simulation of cerebellar granule cells. Bio Systems. 94 [PubMed]

Diwakar S, Lombardo P, Solinas S, Naldi G, D'Angelo E. (2011). Local field potential modeling predicts dense activation in cerebellar granule cells clusters under LTP and LTD control. PloS one. 6 [PubMed]

Diwakar S, Magistretti J, Goldfarb M, Naldi G, D'Angelo E. (2009). Axonal Na+ channels ensure fast spike activation and back-propagation in cerebellar granule cells. Journal of neurophysiology. 101 [PubMed]

Garrido JA, Luque NR, D'Angelo E, Ros E. (2013). Distributed cerebellar plasticity implements adaptable gain control in a manipulation task: a closed-loop robotic simulation Frontiers in neural circuits. 7 [PubMed]

Garrido JA, Ros E, D'Angelo E. (2013). Spike timing regulation on the millisecond scale by distributed synaptic plasticity at the cerebellum input stage: a simulation study. Frontiers in computational neuroscience. 7 [PubMed]

Lonardoni D et al. (2017). Recurrently connected and localized neuronal communities initiate coordinated spontaneous activity in neuronal networks. PLoS computational biology. 13 [PubMed]

Luque NR, Naveros F, Carrillo RR, Ros E, Arleo A. (2019). Spike burst-pause dynamics of Purkinje cells regulate sensorimotor adaptation. PLoS computational biology. 15 [PubMed]

Masoli S, D'Angelo E. (2017). Synaptic Activation of a Detailed Purkinje Cell Model Predicts Voltage-Dependent Control of Burst-Pause Responses in Active Dendrites. Frontiers in cellular neuroscience. 11 [PubMed]

Masoli S, Ottaviani A, Casali S, D'Angelo E. (2020). Cerebellar Golgi cell models predict dendritic processing and mechanisms of synaptic plasticity. PLoS computational biology. 16 [PubMed]

Masoli S, Solinas S, D'Angelo E. (2015). Action potential processing in a detailed Purkinje cell model reveals a critical role for axonal compartmentalization. Frontiers in cellular neuroscience. 9 [PubMed]

Parasuram H et al. (2016). Computational Modeling of Single Neuron Extracellular Electric Potentials and Network Local Field Potentials using LFPsim. Frontiers in computational neuroscience. 10 [PubMed]

Rössert C, Solinas S, D'Angelo E, Dean P, Porrill J. (2014). Model cerebellar granule cells can faithfully transmit modulated firing rate signals. Frontiers in cellular neuroscience. 8 [PubMed]

Solinas S et al. (2007). Computational reconstruction of pacemaking and intrinsic electroresponsiveness in cerebellar Golgi cells. Frontiers in cellular neuroscience. 1 [PubMed]

Sudhakar SK et al. (2017). Spatiotemporal network coding of physiological mossy fiber inputs by the cerebellar granular layer. PLoS computational biology. 13 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.