Nicholson DA et al. (2006). Distance-dependent differences in synapse number and AMPA receptor expression in hippocampal CA1 pyramidal neurons. Neuron. 50 [PubMed]

See more from authors: Nicholson DA · Trana R · Katz Y · Kath WL · Spruston N · Geinisman Y

References and models cited by this paper

Amaral DG, Witter MP. (1995). Hippocampal Formation The Rat Nervous System.

Andrasfalvy BK, Magee JC. (2001). Distance-dependent increase in AMPA receptor number in the dendrites of adult hippocampal CA1 pyramidal neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 21 [PubMed]

Bailey CH, Greenough WT. (1988). Anatomy of a memory: convergence of results across a diversity of tests Trends Neurosci. 11

Bailey CH, Kandel ER. (1993). Structural changes accompanying memory storage. Annual review of physiology. 55 [PubMed]

Cai X et al. (2004). Unique roles of SK and Kv4.2 potassium channels in dendritic integration. Neuron. 44 [PubMed]

Carlin RK, Grab DJ, Cohen RS, Siekevitz P. (1980). Isolation and characterization of postsynaptic densities from various brain regions: enrichment of different types of postsynaptic densities. The Journal of cell biology. 86 [PubMed]

Christie JM, Jahr CE. (2006). Multivesicular release at Schaffer collateral-CA1 hippocampal synapses. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]

Conti R, Lisman J. (2003). The high variance of AMPA receptor- and NMDA receptor-mediated responses at single hippocampal synapses: evidence for multiquantal release. Proceedings of the National Academy of Sciences of the United States of America. 100 [PubMed]

Desmond NL, Weinberg RJ. (1998). Enhanced expression of AMPA receptor protein at perforated axospinous synapses. Neuroreport. 9 [PubMed]

Ehlers MD. (2002). Molecular morphogens for dendritic spines. Trends in neurosciences. 25 [PubMed]

Ganeshina O, Berry RW, Petralia RS, Nicholson DA, Geinisman Y. (2004). Differences in the expression of AMPA and NMDA receptors between axospinous perforated and nonperforated synapses are related to the configuration and size of postsynaptic densities. The Journal of comparative neurology. 468 [PubMed]

Ganeshina O, Berry RW, Petralia RS, Nicholson DA, Geinisman Y. (2004). Synapses with a segmented, completely partitioned postsynaptic density express more AMPA receptors than other axospinous synaptic junctions. Neuroscience. 125 [PubMed]

Gasparini S, Magee JC. (2006). State-dependent dendritic computation in hippocampal CA1 pyramidal neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]

Gasparini S, Migliore M, Magee JC. (2004). On the initiation and propagation of dendritic spikes in CA1 pyramidal neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 24 [PubMed]

Geinisman Y. (2000). Structural synaptic modifications associated with hippocampal LTP and behavioral learning. Cerebral cortex (New York, N.Y. : 1991). 10 [PubMed]

Geinisman Y et al. (2004). Aging, spatial learning, and total synapse number in the rat CA1 stratum radiatum. Neurobiology of aging. 25 [PubMed]

Golding NL, Mickus TJ, Katz Y, Kath WL, Spruston N. (2005). Factors mediating powerful voltage attenuation along CA1 pyramidal neuron dendrites. The Journal of physiology. 568 [PubMed]

Golding NL, Spruston N. (1998). Dendritic sodium spikes are variable triggers of axonal action potentials in hippocampal CA1 pyramidal neurons. Neuron. 21 [PubMed]

Golding NL, Staff NP, Spruston N. (2002). Dendritic spikes as a mechanism for cooperative long-term potentiation. Nature. 418 [PubMed]

Harris KM, Jensen FE, Tsao B. (1992). Three-dimensional structure of dendritic spines and synapses in rat hippocampus (CA1) at postnatal day 15 and adult ages: implications for the maturation of synaptic physiology and long-term potentiation. The Journal of neuroscience : the official journal of the Society for Neuroscience. 12 [PubMed]

Harris KM, Sultan P. (1995). Variation in the number, location and size of synaptic vesicles provides an anatomical basis for the nonuniform probability of release at hippocampal CA1 synapses. Neuropharmacology. 34 [PubMed]

Hestrin S, Nicoll RA, Perkel DJ, Sah P. (1990). Analysis of excitatory synaptic action in pyramidal cells using whole-cell recording from rat hippocampal slices. The Journal of physiology. 422 [PubMed]

Hines ML, Carnevale NT. (1997). The NEURON simulation environment. Neural computation. 9 [PubMed]

Ishizuka N, Cowan WM, Amaral DG. (1995). A quantitative analysis of the dendritic organization of pyramidal cells in the rat hippocampus. The Journal of comparative neurology. 362 [PubMed]

Jarsky T, Roxin A, Kath WL, Spruston N. (2005). Conditional dendritic spike propagation following distal synaptic activation of hippocampal CA1 pyramidal neurons. Nature neuroscience. 8 [PubMed]

Jones DG, Harris RJ. (1995). An analysis of contemporary morphological concepts of synaptic remodelling in the CNS: perforated synapses revisited. Reviews in the neurosciences. 6 [PubMed]

Kennedy MB. (2000). Signal-processing machines at the postsynaptic density. Science (New York, N.Y.). 290 [PubMed]

Lang C et al. (2004). Transient expansion of synaptically connected dendritic spines upon induction of hippocampal long-term potentiation. Proceedings of the National Academy of Sciences of the United States of America. 101 [PubMed]

Li KW et al. (2004). Proteomics analysis of rat brain postsynaptic density. Implications of the diverse protein functional groups for the integration of synaptic physiology. The Journal of biological chemistry. 279 [PubMed]

Liu G, Choi S, Tsien RW. (1999). Variability of neurotransmitter concentration and nonsaturation of postsynaptic AMPA receptors at synapses in hippocampal cultures and slices. Neuron. 22 [PubMed]

Mackenzie PJ et al. (1999). Ultrastructural correlates of quantal synaptic function at single CNS synapses. The Journal of neuroscience : the official journal of the Society for Neuroscience. 19 [PubMed]

Magee JC, Cook EP. (2000). Somatic EPSP amplitude is independent of synapse location in hippocampal pyramidal neurons. Nature neuroscience. 3 [PubMed]

Mainen ZF, Malinow R, Svoboda K. (1999). Synaptic calcium transients in single spines indicate that NMDA receptors are not saturated. Nature. 399 [PubMed]

Matsuzaki M, Honkura N, Ellis-Davies GC, Kasai H. (2004). Structural basis of long-term potentiation in single dendritic spines. Nature. 429 [PubMed]

McAllister AK, Stevens CF. (2000). Nonsaturation of AMPA and NMDA receptors at hippocampal synapses. Proceedings of the National Academy of Sciences of the United States of America. 97 [PubMed]

Megías M, Emri Z, Freund TF, Gulyás AI. (2001). Total number and distribution of inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells. Neuroscience. 102 [PubMed]

Nikonenko I, Jourdain P, Alberi S, Toni N, Muller D. (2002). Activity-induced changes of spine morphology. Hippocampus. 12 [PubMed]

Nimchinsky EA, Sabatini BL, Svoboda K. (2002). Structure and function of dendritic spines. Annual review of physiology. 64 [PubMed]

Noguchi J, Matsuzaki M, Ellis-Davies GC, Kasai H. (2005). Spine-neck geometry determines NMDA receptor-dependent Ca2+ signaling in dendrites. Neuron. 46 [PubMed]

Nusser Z. (2000). AMPA and NMDA receptors: similarities and differences in their synaptic distribution. Current opinion in neurobiology. 10 [PubMed]

Nusser Z, Cull-Candy S, Farrant M. (1997). Differences in synaptic GABA(A) receptor number underlie variation in GABA mini amplitude. Neuron. 19 [PubMed]

Nusser Z, Hájos N, Somogyi P, Mody I. (1998). Increased number of synaptic GABA(A) receptors underlies potentiation at hippocampal inhibitory synapses. Nature. 395 [PubMed]

Nusser Z et al. (1998). Cell type and pathway dependence of synaptic AMPA receptor number and variability in the hippocampus. Neuron. 21 [PubMed]

Otmakhova NA, Otmakhov N, Lisman JE. (2002). Pathway-specific properties of AMPA and NMDA-mediated transmission in CA1 hippocampal pyramidal cells. The Journal of neuroscience : the official journal of the Society for Neuroscience. 22 [PubMed]

Ottersen OP, Landsend AS. (1997). Organization of glutamate receptors at the synapse. The European journal of neuroscience. 9 [PubMed]

Peng J et al. (2004). Semiquantitative proteomic analysis of rat forebrain postsynaptic density fractions by mass spectrometry. The Journal of biological chemistry. 279 [PubMed]

Peters A, Kaiserman-Abramof IR. (1969). The small pyramidal neuron of the rat cerebral cortex. The synapses upon dendritic spines. Zeitschrift fur Zellforschung und mikroskopische Anatomie (Vienna, Austria : 1948). 100 [PubMed]

Petralia RS et al. (1999). Selective acquisition of AMPA receptors over postnatal development suggests a molecular basis for silent synapses. Nature neuroscience. 2 [PubMed]

Petralia RS, Wenthold RJ. (1999). Immunocytochemistry of NMDA receptors Methods in Molecular Biology: NMDA Receptor Protocols.

Racca C, Stephenson FA, Streit P, Roberts JD, Somogyi P. (2000). NMDA receptor content of synapses in stratum radiatum of the hippocampal CA1 area. The Journal of neuroscience : the official journal of the Society for Neuroscience. 20 [PubMed]

Raghavachari S, Lisman JE. (2004). Properties of quantal transmission at CA1 synapses. Journal of neurophysiology. 92 [PubMed]

Rall W. (1977). Core conductor theory and cable properties of neurons Handbook of Physiology. The Nervous System. Cellular Biology of Neurons. 1(1.1)

Schiller J, Schiller Y. (2001). NMDA receptor-mediated dendritic spikes and coincident signal amplification. Current opinion in neurobiology. 11 [PubMed]

Smith MA, Ellis-Davies GC, Magee JC. (2003). Mechanism of the distance-dependent scaling of Schaffer collateral synapses in rat CA1 pyramidal neurons. The Journal of physiology. 548 [PubMed]

Sorra KE, Harris KM. (2000). Overview on the structure, composition, function, development, and plasticity of hippocampal dendritic spines. Hippocampus. 10 [PubMed]

Spruston N, Jonas P, Sakmann B. (1995). Dendritic glutamate receptor channels in rat hippocampal CA3 and CA1 pyramidal neurons. The Journal of physiology. 482 ( Pt 2) [PubMed]

Takumi Y, Ramírez-León V, Laake P, Rinvik E, Ottersen OP. (1999). Different modes of expression of AMPA and NMDA receptors in hippocampal synapses. Nature neuroscience. 2 [PubMed]

Wei DS et al. (2001). Compartmentalized and binary behavior of terminal dendrites in hippocampal pyramidal neurons. Science (New York, N.Y.). 293 [PubMed]

Williams SR, Stuart GJ. (2003). Role of dendritic synapse location in the control of action potential output. Trends in neurosciences. 26 [PubMed]

References and models that cite this paper

Baker JL, Perez-Rosello T, Migliore M, Barrionuevo G, Ascoli GA. (2011). A computer model of unitary responses from associational/commissural and perforant path synapses in hippocampal CA3 pyramidal cells. Journal of computational neuroscience. 31 [PubMed]

Bloss EB et al. (2016). Structured Dendritic Inhibition Supports Branch-Selective Integration in CA1 Pyramidal Cells. Neuron. 89 [PubMed]

Bloss EB et al. (2018). Single excitatory axons form clustered synapses onto CA1 pyramidal cell dendrites. Nature neuroscience. 21 [PubMed]

Bono J, Clopath C. (2017). Modeling somatic and dendritic spike mediated plasticity at the single neuron and network level. Nature communications. 8 [PubMed]

Gulledge AT, Carnevale NT, Stuart GJ. (2012). Electrical advantages of dendritic spines. PloS one. 7 [PubMed]

Katz Y et al. (2009). Synapse distribution suggests a two-stage model of dendritic integration in CA1 pyramidal neurons. Neuron. 63 [PubMed]

Menon V et al. (2013). Balanced synaptic impact via distance-dependent synapse distribution and complementary expression of AMPARs and NMDARs in hippocampal dendrites. Neuron. 80 [PubMed]

Petroccione MA et al. (2023). Neuronal glutamate transporters control reciprocal inhibition and gain modulation in D1 medium spiny neurons. eLife. 12 [PubMed]

Sterratt DC, Groen MR, Meredith RM, van Ooyen A. (2012). Spine calcium transients induced by synaptically-evoked action potentials can predict synapse location and establish synaptic democracy. PLoS computational biology. 8 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.