Blethyn KL, Hughes SW, Tóth TI, Cope DW, Crunelli V. (2006). Neuronal basis of the slow (<1 Hz) oscillation in neurons of the nucleus reticularis thalami in vitro. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]

See more from authors: Blethyn KL · Hughes SW · Tóth TI · Cope DW · Crunelli V

References and models cited by this paper

Amzica F, Nuñez A, Steriade M. (1992). Delta frequency (1-4 Hz) oscillations of perigeniculate thalamic neurons and their modulation by light. Neuroscience. 51 [PubMed]

Bal T, McCormick DA. (1993). Mechanisms of oscillatory activity in guinea-pig nucleus reticularis thalami in vitro: a mammalian pacemaker. The Journal of physiology. 468 [PubMed]

Beurrier C, Congar P, Bioulac B, Hammond C. (1999). Subthalamic nucleus neurons switch from single-spike activity to burst-firing mode. The Journal of neuroscience : the official journal of the Society for Neuroscience. 19 [PubMed]

Bhattacharjee A, Kaczmarek LK. (2005). For K+ channels, Na+ is the new Ca2+. Trends in neurosciences. 28 [PubMed]

BoSmith RE, Briggs I, Sturgess NC. (1993). Inhibitory actions of ZENECA ZD7288 on whole-cell hyperpolarization activated inward current (If) in guinea-pig dissociated sinoatrial node cells. British journal of pharmacology. 110 [PubMed]

Broberger C, McCormick DA. (2005). Excitatory effects of thyrotropin-releasing hormone in the thalamus. The Journal of neuroscience : the official journal of the Society for Neuroscience. 25 [PubMed]

Brunton J, Charpak S. (1997). Heterogeneity of cell firing properties and opioid sensitivity in the thalamic reticular nucleus. Neuroscience. 78 [PubMed]

Contreras D, Curró Dossi R, Steriade M. (1993). Electrophysiological properties of cat reticular thalamic neurones in vivo. The Journal of physiology. 470 [PubMed]

Contreras D, Steriade M. (1995). Cellular basis of EEG slow rhythms: a study of dynamic corticothalamic relationships. The Journal of neuroscience : the official journal of the Society for Neuroscience. 15 [PubMed]

Cox CL, Sherman SM. (1999). Glutamate inhibits thalamic reticular neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 19 [PubMed]

Crunelli V et al. (2002). Novel neuronal and astrocytic mechanisms in thalamocortical loop dynamics. Philosophical transactions of the Royal Society of London. Series B, Biological sciences. 357 [PubMed]

Crunelli V, Lightowler S, Pollard CE. (1989). A T-type Ca2+ current underlies low-threshold Ca2+ potentials in cells of the cat and rat lateral geniculate nucleus. The Journal of physiology. 413 [PubMed]

Crunelli V, Tóth TI, Cope DW, Blethyn K, Hughes SW. (2005). The 'window' T-type calcium current in brain dynamics of different behavioural states. The Journal of physiology. 562 [PubMed]

Dale N. (1993). A large, sustained Na(+)- and voltage-dependent K+ current in spinal neurons of the frog embryo. The Journal of physiology. 462 [PubMed]

Destexhe A, Contreras D, Sejnowski TJ, Steriade M. (1994). A model of spindle rhythmicity in the isolated thalamic reticular nucleus. Journal of neurophysiology. 72 [PubMed]

Domich L, Oakson G, Steriade M. (1986). Thalamic burst patterns in the naturally sleeping cat: a comparison between cortically projecting and reticularis neurones. The Journal of physiology. 379 [PubMed]

Fuentealba P et al. (2004). Experimental evidence and modeling studies support a synchronizing role for electrical coupling in the cat thalamic reticular neurons in vivo. The European journal of neuroscience. 20 [PubMed]

Fuentealba P, Timofeev I, Bazhenov M, Sejnowski TJ, Steriade M. (2005). Membrane bistability in thalamic reticular neurons during spindle oscillations. Journal of neurophysiology. 93 [PubMed]

HODGKIN AL, HUXLEY AF. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of physiology. 117 [PubMed]

Hughes SW, Blethyn KL, Cope DW, Crunelli V. (2002). Properties and origin of spikelets in thalamocortical neurones in vitro. Neuroscience. 110 [PubMed]

Hughes SW, Cope DW, Blethyn KL, Crunelli V. (2002). Cellular mechanisms of the slow (<1 Hz) oscillation in thalamocortical neurons in vitro. Neuron. 33 [PubMed]

Hughes SW, Cope DW, Crunelli V. (1998). Dynamic clamp study of Ih modulation of burst firing and delta oscillations in thalamocortical neurons in vitro. Neuroscience. 87 [PubMed]

Hughes SW, Cope DW, Tóth TI, Williams SR, Crunelli V. (1999). All thalamocortical neurones possess a T-type Ca2+ 'window' current that enables the expression of bistability-mediated activities. The Journal of physiology. 517 ( Pt 3) [PubMed]

Hughes SW et al. (2004). Synchronized oscillations at alpha and theta frequencies in the lateral geniculate nucleus. Neuron. 42 [PubMed]

Huguenard JR, Pape HC, Bal T, Mccormick DA. (1997). Electrophysiological and pharmacological properties of thalamic GABAergic neurons Thalamus.

Huguenard JR, Prince DA. (1991). Slow inactivation of a TEA-sensitive K current in acutely isolated rat thalamic relay neurons. Journal of neurophysiology. 66 [PubMed]

Huguenard JR, Prince DA. (1992). A novel T-type current underlies prolonged Ca(2+)-dependent burst firing in GABAergic neurons of rat thalamic reticular nucleus. The Journal of neuroscience : the official journal of the Society for Neuroscience. 12 [PubMed]

Hutcheon B, Miura RM, Yarom Y, Puil E. (1994). Low-threshold calcium current and resonance in thalamic neurons: a model of frequency preference. Journal of neurophysiology. 71 [PubMed]

Kim U, McCormick DA. (1998). Functional and ionic properties of a slow afterhyperpolarization in ferret perigeniculate neurons in vitro. Journal of neurophysiology. 80 [PubMed]

Klöckner U et al. (1999). Comparison of the Ca2 + currents induced by expression of three cloned alpha1 subunits, alpha1G, alpha1H and alpha1I, of low-voltage-activated T-type Ca2 + channels. The European journal of neuroscience. 11 [PubMed]

Landisman CE et al. (2002). Electrical synapses in the thalamic reticular nucleus. The Journal of neuroscience : the official journal of the Society for Neuroscience. 22 [PubMed]

Lee KH, McCormick DA. (1997). Modulation of spindle oscillations by acetylcholine, cholecystokinin and 1S,3R-ACPD in the ferret lateral geniculate and perigeniculate nuclei in vitro. Neuroscience. 77 [PubMed]

Long MA, Landisman CE, Connors BW. (2004). Small clusters of electrically coupled neurons generate synchronous rhythms in the thalamic reticular nucleus. The Journal of neuroscience : the official journal of the Society for Neuroscience. 24 [PubMed]

Lopes da Silva FH, Simon NR, Manshanden I. (2000). A MEG study of sleep. Brain Res. 860

McCormick DA, Pape HC. (1990). Properties of a hyperpolarization-activated cation current and its role in rhythmic oscillation in thalamic relay neurones. The Journal of physiology. 431 [PubMed]

Monteggia LM, Eisch AJ, Tang MD, Kaczmarek LK, Nestler EJ. (2000). Cloning and localization of the hyperpolarization-activated cyclic nucleotide-gated channel family in rat brain. Brain research. Molecular brain research. 81 [PubMed]

Notomi T, Shigemoto R. (2004). Immunohistochemical localization of Ih channel subunits, HCN1-4, in the rat brain. The Journal of comparative neurology. 471 [PubMed]

Perez-Reyes E. (2003). Molecular physiology of low-voltage-activated t-type calcium channels. Physiological reviews. 83 [PubMed]

Sanchez-Vives MV, McCormick DA. (2000). Cellular and network mechanisms of rhythmic recurrent activity in neocortex. Nature neuroscience. 3 [PubMed]

Simon NR, Manshanden I, Kemp B. (2003). Whole-headmeasures of sleep from MEG signals and the ubiquitous slow oscillation Sleep Res Online. 5

Steriade M, Contreras D, Amzica F, Timofeev I. (1996). Synchronization of fast (30-40 Hz) spontaneous oscillations in intrathalamic and thalamocortical networks. The Journal of neuroscience : the official journal of the Society for Neuroscience. 16 [PubMed]

Steriade M, Contreras D, Curró Dossi R, Nuñez A. (1993). The slow (< 1 Hz) oscillation in reticular thalamic and thalamocortical neurons: scenario of sleep rhythm generation in interacting thalamic and neocortical networks. The Journal of neuroscience : the official journal of the Society for Neuroscience. 13 [PubMed]

Steriade M, Domich L, Oakson G. (1986). Reticularis thalami neurons revisited: activity changes during shifts in states of vigilance. The Journal of neuroscience : the official journal of the Society for Neuroscience. 6 [PubMed]

Steriade M, Nuñez A, Amzica F. (1993). Intracellular analysis of relations between the slow (< 1 Hz) neocortical oscillation and other sleep rhythms of the electroencephalogram. The Journal of neuroscience : the official journal of the Society for Neuroscience. 13 [PubMed]

Steriade M, Nuñez A, Amzica F. (1993). A novel slow (< 1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components. The Journal of neuroscience : the official journal of the Society for Neuroscience. 13 [PubMed]

Steriade M, Timofeev I, Grenier F. (2001). Natural waking and sleep states: a view from inside neocortical neurons. Journal of neurophysiology. 85 [PubMed]

Talley EM et al. (1999). Differential distribution of three members of a gene family encoding low voltage-activated (T-type) calcium channels. The Journal of neuroscience : the official journal of the Society for Neuroscience. 19 [PubMed]

Tennigkeit F, Schwarz DW, Puil E. (1998). Modulation of bursts and high-threshold calcium spikes in neurons of rat auditory thalamus. Neuroscience. 83 [PubMed]

Timofeev I, Steriade M. (1996). Low-frequency rhythms in the thalamus of intact-cortex and decorticated cats. Journal of neurophysiology. 76 [PubMed]

Tóth TI, Crunelli V. (2001). Estimation of the activation and kinetic properties of I(Na) and I(K) from the time course of the action potential. Journal of neuroscience methods. 111 [PubMed]

Tóth TI, Hughes SW, Crunelli V. (1998). Analysis and biophysical interpretation of bistable behaviour in thalamocortical neurons. Neuroscience. 87 [PubMed]

Uhlrich DJ, Cucchiaro JB, Humphrey AL, Sherman SM. (1991). Morphology and axonal projection patterns of individual neurons in the cat perigeniculate nucleus. Journal of neurophysiology. 65 [PubMed]

Williams SR, Tóth TI, Turner JP, Hughes SW, Crunelli V. (1997). The 'window' component of the low threshold Ca2+ current produces input signal amplification and bistability in cat and rat thalamocortical neurones. The Journal of physiology. 505 ( Pt 3) [PubMed]

Zhang L, Jones EG. (2004). Corticothalamic inhibition in the thalamic reticular nucleus. Journal of neurophysiology. 91 [PubMed]

References and models that cite this paper

Broicher T, Kanyshkova T, Meuth P, Pape HC, Budde T. (2008). Correlation of T-channel coding gene expression, IT, and the low threshold Ca2+ spike in the thalamus of a rat model of absence epilepsy. Molecular and cellular neurosciences. 39 [PubMed]

Connelly WM, Crunelli V, Errington AC. (2015). The Global Spike: Conserved Dendritic Properties Enable Unique Ca2+ Spike Generation in Low-Threshold Spiking Neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 35 [PubMed]

Gorin M et al. (2016). Interdependent Conductances Drive Infraslow Intrinsic Rhythmogenesis in a Subset of Accessory Olfactory Bulb Projection Neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 36 [PubMed]

Städele C, Heigele S, Stein W. (2015). Neuromodulation to the Rescue: Compensation of Temperature-Induced Breakdown of Rhythmic Motor Patterns via Extrinsic Neuromodulatory Input. PLoS biology. 13 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.