Motor cortex microcircuit simulation based on brain activity mapping (Chadderdon et al. 2014)


"... We developed a computational model based primarily on a unified set of brain activity mapping studies of mouse M1. The simulation consisted of 775 spiking neurons of 10 cell types with detailed population-to-population connectivity. Static analysis of connectivity with graph-theoretic tools revealed that the corticostriatal population showed strong centrality, suggesting that would provide a network hub. ... By demonstrating the effectiveness of combined static and dynamic analysis, our results show how static brain maps can be related to the results of brain activity mapping."

Model Type: Realistic Network

Region(s) or Organism(s): Neocortex

Cell Type(s): Neocortex L5/6 pyramidal GLU cell; Neocortex M1 L2/6 pyramidal intratelencephalic GLU cell; Neocortex fast spiking (FS) interneuron; Neocortex spiking regular (RS) neuron; Neocortex spiking low threshold (LTS) neuron

Receptors: GabaA; AMPA; NMDA

Transmitters: Gaba; Glutamate

Model Concept(s): Oscillations; Laminar Connectivity

Simulation Environment: NEURON

Implementer(s): Lytton, William [bill.lytton at downstate.edu]; Neymotin, Sam [Samuel.Neymotin at nki.rfmh.org]; Shepherd, Gordon MG [g-shepherd at northwestern.edu]; Chadderdon, George [gchadder3 at gmail.com]; Kerr, Cliff [cliffk at neurosim.downstate.edu]

References:

Chadderdon GL et al. (2014). Motor cortex microcircuit simulation based on brain activity mapping. Neural computation. 26 [PubMed]


This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.