Effect of the initial synaptic state on the probability to induce LTP and LTD (Migliore et al. 2015)


NEURON mod files from the paper: M. Migliore, et al. (2015). In this paper, we investigate the possibility that the experimental protocols on synaptic plasticity may result in different consequences (e.g., LTD instead of LTP), according to the initial conditions of the stimulated synapses, and can generate confusing results. Using biophysical models of synaptic plasticity and hippocampal CA1 pyramidal neurons, we study how, why, and to what extent EPSPs observed at the soma after induction of LTP/LTD reflects the actual (local) synaptic state. The model and the results suggest a physiologically plausible explanation of why LTD induction is experimentally difficult, and they offer experimentally testable predictions on the stimulation protocols that may be more effective.

Model Type: Synapse; Dendrite

Region(s) or Organism(s): Hippocampus

Cell Type(s): Hippocampus CA1 pyramidal GLU cell

Currents: I Na,t; I A; I K; I h

Receptors: AMPA

Transmitters: Glutamate

Model Concept(s): Long-term Synaptic Plasticity

Simulation Environment: NEURON

Implementer(s): Migliore, Michele [Michele.Migliore at Yale.edu]; Migliore, Rosanna [rosanna.migliore at cnr.it]

References:

Migliore M, De Simone G, Migliore R. (2015). Effect of the initial synaptic state on the probability to induce long-term potentiation and depression. Biophysical journal. 108 [PubMed]


This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.