Actions of Rotenone on ionic currents and MEPPs in Mouse Hippocampal Neurons (Huang et al 2018)


" ... With the aid of patch-clamp technology and simulation modeling, the effects of (Rotenone) Rot on membrane ion currents present in mHippoE-14 cells were investigated. Results: Addition of Rot produced an inhibitory action on the peak amplitude of INa ...; however, neither activation nor inactivation kinetics of INa was changed during cell exposure to this compound. Addition of Rot produced little or no modifications in the steady-state inactivation curve of INa. Rot increased the amplitude of Ca2+-activated Cl- current in response to membrane depolarization ... . Moreover, when these cells were exposed to 10 µM Rot, a specific population of ATP-sensitive K+ channels ... was measured, despite its inability to alter single-channel conductance. Under current clamp condition, the frequency of miniature end-plate potentials in mHippoE-14 cells was significantly raised in the presence of Rot (10 µM) with no changes in their amplitude and time course of rise and decay. In simulated model of hippocampal neurons incorporated with chemical autaptic connection, increased autaptic strength to mimic the action of Rot was noted to change the bursting pattern with emergence of subthreshold potentials. Conclusions: The Rot effects presented herein might exert a significant action on functional activities of hippocampal neurons occurring in vivo. "

Model Type: Neuron or other electrically excitable cell

Region(s) or Organism(s): Hippocampus

Cell Type(s): Hippocampus CA3 pyramidal GLU cell

Currents: I A; I Calcium; I K,Ca; I Na,t; I_KD

Model Concept(s): Action Potentials; Bursting; Ephaptic coupling

Simulation Environment: XPPAUT

Implementer(s): Wu, Sheng-Nan [snwu at mail.ncku.edu.tw]

References:

Huang CW, Lin KM, Hung TY, Chuang YC, Wu SN. (2018). Multiple Actions of Rotenone, an Inhibitor of Mitochondrial Respiratory Chain, on Ionic Currents and Miniature End-Plate Potential in Mouse Hippocampal (mHippoE-14) Neurons. Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology. 47 [PubMed]


This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.