Santhakumar V et al. (2000). Granule cell hyperexcitability in the early post-traumatic rat dentate gyrus: the 'irritable mossy cell' hypothesis. The Journal of physiology. 524 Pt 1 [PubMed]

See more from authors: Santhakumar V · Bender R · Frotscher M · Ross ST · Hollrigel GS · Toth Z · Soltesz I

References and models cited by this paper
References and models that cite this paper

Aradi I, Soltesz I. (2002). Modulation of network behaviour by changes in variance in interneuronal properties. The Journal of physiology. 538 [PubMed]

Howard AL, Neu A, Morgan RJ, Echegoyen JC, Soltesz I. (2007). Opposing modifications in intrinsic currents and synaptic inputs in post-traumatic mossy cells: evidence for single-cell homeostasis in a hyperexcitable network. Journal of neurophysiology. 97 [PubMed]

Morgan RJ, Santhakumar V, Soltesz I. (2007). Modeling the dentate gyrus. Progress in brain research. 163 [PubMed]

Santhakumar V, Aradi I, Soltesz I. (2005). Role of mossy fiber sprouting and mossy cell loss in hyperexcitability: a network model of the dentate gyrus incorporating cell types and axonal topography. Journal of neurophysiology. 93 [PubMed]

Yu J, Proddutur A, Elgammal FS, Ito T, Santhakumar V. (2013). Status epilepticus enhances tonic GABA currents and depolarizes GABA reversal potential in dentate fast-spiking basket cells. Journal of neurophysiology. 109 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.