Levy WB, Steward O. (1983). Temporal contiguity requirements for long-term associative potentiation/depression in the hippocampus. Neuroscience. 8 [PubMed]

See more from authors: Levy WB · Steward O

References and models cited by this paper
References and models that cite this paper

Abbott LF, Nelson SB. (2000). Synaptic plasticity: taming the beast. Nature neuroscience. 3 Suppl [PubMed]

Badoual M et al. (2006). Biophysical and phenomenological models of multiple spike interactions in spike-timing dependent plasticity. International journal of neural systems. 16 [PubMed]

Durstewitz D, Seamans JK, Sejnowski TJ. (2000). Dopamine-mediated stabilization of delay-period activity in a network model of prefrontal cortex. Journal of neurophysiology. 83 [PubMed]

Franks KM, Sejnowski TJ. (2002). Complexity of calcium signaling in synaptic spines. BioEssays : news and reviews in molecular, cellular and developmental biology. 24 [PubMed]

Gabbiani F, Cox SJ. (2010). Mathematics for Neuroscientists.

Gerstner W, Kistler WM. (2002). Mathematical formulations of Hebbian learning. Biological cybernetics. 87 [PubMed]

Hasselmo ME. (2005). A model of prefrontal cortical mechanisms for goal-directed behavior. Journal of cognitive neuroscience. 17 [PubMed]

Izhikevich EM. (2007). Solving the distal reward problem through linkage of STDP and dopamine signaling. Cerebral cortex (New York, N.Y. : 1991). 17 [PubMed]

Jedlicka P, Benuskova L, Abraham WC. (2015). A Voltage-Based STDP Rule Combined with Fast BCM-Like Metaplasticity Accounts for LTP and Concurrent "Heterosynaptic" LTD in the Dentate Gyrus In Vivo. PLoS computational biology. 11 [PubMed]

Karmarkar UR, Buonomano DV. (2002). A model of spike-timing dependent plasticity: one or two coincidence detectors? Journal of neurophysiology. 88 [PubMed]

Karmarkar UR, Najarian MT, Buonomano DV. (2002). Mechanisms and significance of spike-timing dependent plasticity. Biological cybernetics. 87 [PubMed]

Migliore M, Hoffman DA, Magee JC, Johnston D. (1999). Role of an A-type K+ conductance in the back-propagation of action potentials in the dendrites of hippocampal pyramidal neurons. Journal of computational neuroscience. 7 [PubMed]

Molter C, Salihoglu U, Bersini H. (2007). The road to chaos by time-asymmetric Hebbian learning in recurrent neural networks. Neural computation. 19 [PubMed]

Roberts PD, Bell CC. (2000). Computational consequences of temporally asymmetric learning rules: II. Sensory image cancellation. Journal of computational neuroscience. 9 [PubMed]

Saudargiene A, Porr B, Wörgötter F. (2004). How the shape of pre- and postsynaptic signals can influence STDP: a biophysical model. Neural computation. 16 [PubMed]

Sejnowski TJ, Destexhe A. (2000). Why do we sleep? Brain research. 886 [PubMed]

Shen YS, Gao H, Yao H. (2005). Spike timing-dependent synaptic plasticity in visual cortex: a modeling study. Journal of computational neuroscience. 18 [PubMed]

Siekmeier PJ, Hasselmo ME, Howard MW, Coyle J. (2007). Modeling of context-dependent retrieval in hippocampal region CA1: implications for cognitive function in schizophrenia. Schizophrenia research. 89 [PubMed]

Sterratt DC, Graham B, Gillies A, Willshaw D. (2011). Principles of Computational Modelling in Neuroscience, Cambridge University Press.

Versace M, Ames H, Léveillé J, Fortenberry B, Gorchetchnikov A. (2008). KInNeSS: a modular framework for computational neuroscience. Neuroinformatics. 6 [PubMed]

Wagatsuma H, Yamaguchi Y. (2004). Cognitive map formation through sequence encoding by theta phase precession. Neural computation. 16 [PubMed]

Wallenstein GV, Eichenbaum H, Hasselmo ME. (1998). The hippocampus as an associator of discontiguous events. Trends in neurosciences. 21 [PubMed]

Wallenstein GV, Hasselmo ME. (1997). GABAergic modulation of hippocampal population activity: sequence learning, place field development, and the phase precession effect. Journal of neurophysiology. 78 [PubMed]

Yu X, Shouval HZ, Knierim JJ. (2008). A biophysical model of synaptic plasticity and metaplasticity can account for the dynamics of the backward shift of hippocampal place fields. Journal of neurophysiology. 100 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.