Tateno T, Harsch A, Robinson HP. (2004). Threshold firing frequency-current relationships of neurons in rat somatosensory cortex: type 1 and type 2 dynamics. Journal of neurophysiology. 92 [PubMed]

See more from authors: Tateno T · Harsch A · Robinson HP

References and models cited by this paper
References and models that cite this paper

Arhem P, Klement G, Blomberg C. (2006). Channel density regulation of firing patterns in a cortical neuron model. Biophysical journal. 90 [PubMed]

Buchin A, Rieubland S, Häusser M, Gutkin BS, Roth A. (2016). Inverse Stochastic Resonance in Cerebellar Purkinje Cells. PLoS computational biology. 12 [PubMed]

Börgers C, Kopell NJ. (2008). Gamma oscillations and stimulus selection. Neural computation. 20 [PubMed]

Ermentrout GB, Terman DH. (2010). Mathematical Foundations of Neuroscience Interdisciplinary Applied Mathematics. 35

Fernandez FR, Mehaffey WH, Turner RW. (2005). Dendritic Na+ current inactivation can increase cell excitability by delaying a somatic depolarizing afterpotential. Journal of neurophysiology. 94 [PubMed]

Golomb D et al. (2007). Mechanisms of firing patterns in fast-spiking cortical interneurons. PLoS computational biology. 3 [PubMed]

Humphries MD, Wood R, Gurney K. (2009). Dopamine-modulated dynamic cell assemblies generated by the GABAergic striatal microcircuit. Neural networks : the official journal of the International Neural Network Society. 22 [PubMed]

Jeong HY, Gutkin B. (2007). Synchrony of neuronal oscillations controlled by GABAergic reversal potentials. Neural computation. 19 [PubMed]

Kömek K, Bard Ermentrout G, Walker CP, Cho RY. (2012). Dopamine and gamma band synchrony in schizophrenia--insights from computational and empirical studies. The European journal of neuroscience. 36 [PubMed]

Mensi S et al. (2012). Parameter extraction and classification of three cortical neuron types reveals two distinct adaptation mechanisms. Journal of neurophysiology. 107 [PubMed]

Naundorf B, Geisel T, Wolf F. (2005). Action potential onset dynamics and the response speed of neuronal populations. Journal of computational neuroscience. 18 [PubMed]

Pernelle G, Nicola W, Clopath C. (2018). Gap junction plasticity as a mechanism to regulate network-wide oscillations. PLoS computational biology. 14 [PubMed]

Prescott SA, De Koninck Y, Sejnowski TJ. (2008). Biophysical basis for three distinct dynamical mechanisms of action potential initiation. PLoS computational biology. 4 [PubMed]

Prescott SA, Ratté S, De Koninck Y, Sejnowski TJ. (2008). Pyramidal neurons switch from integrators in vitro to resonators under in vivo-like conditions. Journal of neurophysiology. 100 [PubMed]

Proddutur A, Yu J, Elgammal FS, Santhakumar V. (2013). Seizure-induced alterations in fast-spiking basket cell GABA currents modulate frequency and coherence of gamma oscillation in network simulations. Chaos (Woodbury, N.Y.). 23 [PubMed]

Rowat P. (2007). Interspike interval statistics in the stochastic Hodgkin-Huxley model: coexistence of gamma frequency bursts and highly irregular firing. Neural computation. 19 [PubMed]

Tchumatchenko T, Clopath C. (2014). Oscillations emerging from noise-driven steady state in networks with electrical synapses and subthreshold resonance. Nature communications. 5 [PubMed]

Teka W, Marinov TM, Santamaria F. (2014). Neuronal spike timing adaptation described with a fractional leaky integrate-and-fire model. PLoS computational biology. 10 [PubMed]

Tikidji-Hamburyan RA, Canavier CC. (2020). Shunting Inhibition Improves Synchronization in Heterogeneous Inhibitory Interneuronal Networks with Type 1 Excitability Whereas Hyperpolarizing Inhibition is Better for Type 2 Excitability. eNeuro. 7 [PubMed]

Tikidji-Hamburyan RA, Martínez JJ, White JA, Canavier CC. (2015). Resonant Interneurons Can Increase Robustness of Gamma Oscillations. The Journal of neuroscience : the official journal of the Society for Neuroscience. 35 [PubMed]

Vierling-Claassen D, Cardin JA, Moore CI, Jones SR. (2010). Computational modeling of distinct neocortical oscillations driven by cell-type selective optogenetic drive: separable resonant circuits controlled by low-threshold spiking and fast-spiking interneurons. Frontiers in human neuroscience. 4 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.