Pfister JP, Toyoizumi T, Barber D, Gerstner W. (2006). Optimal spike-timing-dependent plasticity for precise action potential firing in supervised learning. Neural computation. 18 [PubMed]

See more from authors: Pfister JP · Toyoizumi T · Barber D · Gerstner W

References and models cited by this paper
References and models that cite this paper

Asabuki T, Fukai T. (2020). Somatodendritic consistency check for temporal feature segmentation. Nature communications. 11 [PubMed]

Bohte SM, Mozer MC. (2007). Reducing the variability of neural responses: a computational theory of spike-timing-dependent plasticity. Neural computation. 19 [PubMed]

Clopath C, Ziegler L, Vasilaki E, Büsing L, Gerstner W. (2008). Tag-trigger-consolidation: a model of early and late long-term-potentiation and depression. PLoS computational biology. 4 [PubMed]

Costa RP et al. (2017). Synaptic Transmission Optimization Predicts Expression Loci of Long-Term Plasticity. Neuron. 96 [PubMed]

Florian RV. (2007). Reinforcement learning through modulation of spike-timing-dependent synaptic plasticity. Neural computation. 19 [PubMed]

Hiratani N, Fukai T. (2018). Redundancy in synaptic connections enables neurons to learn optimally. Proceedings of the National Academy of Sciences of the United States of America. 115 [PubMed]

Legenstein R, Pecevski D, Maass W. (2008). A learning theory for reward-modulated spike-timing-dependent plasticity with application to biofeedback. PLoS computational biology. 4 [PubMed]

Richmond P, Buesing L, Giugliano M, Vasilaki E. (2011). Democratic population decisions result in robust policy-gradient learning: a parametric study with GPU simulations. PloS one. 6 [PubMed]

Sadeh S, Clopath C, Rotter S. (2015). Emergence of Functional Specificity in Balanced Networks with Synaptic Plasticity. PLoS computational biology. 11 [PubMed]

Toyoizumi T, Pfister JP, Aihara K, Gerstner W. (2007). Optimality model of unsupervised spike-timing-dependent plasticity: synaptic memory and weight distribution. Neural computation. 19 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.