Barmack NH, Yakhnitsa V. (2008). Functions of interneurons in mouse cerebellum. The Journal of neuroscience : the official journal of the Society for Neuroscience. 28 [PubMed]

See more from authors: Barmack NH · Yakhnitsa V

References and models cited by this paper
References and models that cite this paper

Clopath C, Badura A, De Zeeuw CI, Brunel N. (2014). A cerebellar learning model of vestibulo-ocular reflex adaptation in wild-type and mutant mice. The Journal of neuroscience : the official journal of the Society for Neuroscience. 34 [PubMed]

Garrido JA, Ros E, D'Angelo E. (2013). Spike timing regulation on the millisecond scale by distributed synaptic plasticity at the cerebellum input stage: a simulation study. Frontiers in computational neuroscience. 7 [PubMed]

Hariani HN et al. (2023). A system of feed-forward cerebellar circuits that extend and diversify sensory signaling. eLife. [PubMed]

Masoli S, D'Angelo E. (2017). Synaptic Activation of a Detailed Purkinje Cell Model Predicts Voltage-Dependent Control of Burst-Pause Responses in Active Dendrites. Frontiers in cellular neuroscience. 11 [PubMed]

Rössert C, Dean P, Porrill J. (2015). At the Edge of Chaos: How Cerebellar Granular Layer Network Dynamics Can Provide the Basis for Temporal Filters. PLoS computational biology. 11 [PubMed]

Rössert C, Solinas S, D'Angelo E, Dean P, Porrill J. (2014). Model cerebellar granule cells can faithfully transmit modulated firing rate signals. Frontiers in cellular neuroscience. 8 [PubMed]

Sudhakar SK et al. (2017). Spatiotemporal network coding of physiological mossy fiber inputs by the cerebellar granular layer. PLoS computational biology. 13 [PubMed]

Vervaeke K et al. (2010). Rapid desynchronization of an electrically coupled interneuron network with sparse excitatory synaptic input. Neuron. 67 [PubMed]

Wilson CJ, Beverlin B, Netoff T. (2011). Chaotic desynchronization as the therapeutic mechanism of deep brain stimulation. Frontiers in systems neuroscience. 5 [PubMed]

Yamazaki T, Nagao S. (2012). A computational mechanism for unified gain and timing control in the cerebellum. PloS one. 7 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.