Morisset V, Nagy F. (1999). Ionic basis for plateau potentials in deep dorsal horn neurons of the rat spinal cord. The Journal of neuroscience : the official journal of the Society for Neuroscience. 19 [PubMed]

See more from authors: Morisset V · Nagy F

References and models cited by this paper
References and models that cite this paper

Jaffe DB, Brenner R. (2018). A computational model for how the fast afterhyperpolarization paradoxically increases gain in regularly firing neurons. Journal of neurophysiology. 119 [PubMed]

Le Franc Y, Le Masson G. (2010). Multiple firing patterns in deep dorsal horn neurons of the spinal cord: computational analysis of mechanisms and functional implications. Journal of neurophysiology. 104 [PubMed]

Prescott SA, De Koninck Y. (2005). Integration time in a subset of spinal lamina I neurons is lengthened by sodium and calcium currents acting synergistically to prolong subthreshold depolarization. The Journal of neuroscience : the official journal of the Society for Neuroscience. 25 [PubMed]

Sousa M, Szucs P, Lima D, Aguiar P. (2014). The pronociceptive dorsal reticular nucleus contains mostly tonic neurons and shows a high prevalence of spontaneous activity in block preparation. Journal of neurophysiology. 111 [PubMed]

Zhang TC, Janik JJ, Grill WM. (2014). Modeling effects of spinal cord stimulation on wide-dynamic range dorsal horn neurons: influence of stimulation frequency and GABAergic inhibition. Journal of neurophysiology. 112 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.