Cafaro J, Rieke F. (2010). Noise correlations improve response fidelity and stimulus encoding. Nature. 468 [PubMed]

See more from authors: Cafaro J · Rieke F

References and models cited by this paper
References and models that cite this paper

Hong S, Ratté S, Prescott SA, De Schutter E. (2012). Single neuron firing properties impact correlation-based population coding. The Journal of neuroscience : the official journal of the Society for Neuroscience. 32 [PubMed]

Kilinc D, Demir A. (2015). Simulation of noise in neurons and neuronal circuits Proceedings of the IEEE/ACM international conference on computer-aided design (ICCAD).

Kilinc D, Demir A. (2017). Noise in Neuronal and Electronic Circuits: A General Modeling Framework and Non-Monte Carlo Simulation Techniques. IEEE transactions on biomedical circuits and systems. 11 [PubMed]

Poleg-Polsky A. (2019). Dendritic spikes expand the range of well-tolerated population noise structures. The Journal of neuroscience : the official journal of the Society for Neuroscience. 39 [PubMed]

Simmonds B, Chacron MJ. (2015). Activation of parallel fiber feedback by spatially diffuse stimuli reduces signal and noise correlations via independent mechanisms in a cerebellum-like structure. PLoS computational biology. 11 [PubMed]

Tan AY, Andoni S, Priebe NJ. (2013). A spontaneous state of weakly correlated synaptic excitation and inhibition in visual cortex. Neuroscience. 247 [PubMed]

Vogels TP, Sprekeler H, Zenke F, Clopath C, Gerstner W. (2011). Inhibitory plasticity balances excitation and inhibition in sensory pathways and memory networks. Science (New York, N.Y.). 334 [PubMed]

Zeldenrust F, Chameau PJ, Wadman WJ. (2013). Reliability of spike and burst firing in thalamocortical relay cells. Journal of computational neuroscience. 35 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.