Wang XJ. (2010). Neurophysiological and computational principles of cortical rhythms in cognition. Physiological reviews. 90 [PubMed]

See more from authors: Wang XJ

References and models cited by this paper
References and models that cite this paper

Cakan C, Obermayer K. (2020). PLoS computational biology. 16 [PubMed]

Chadderdon GL et al. (2014). Motor cortex microcircuit simulation based on brain activity mapping. Neural computation. 26 [PubMed]

Das A, Narayanan R. (2015). Active dendrites mediate stratified gamma-range coincidence detection in hippocampal model neurons. The Journal of physiology. 593 [PubMed]

David F, Courtiol E, Buonviso N, Fourcaud-Trocmé N. (2015). Competing Mechanisms of Gamma and Beta Oscillations in the Olfactory Bulb Based on Multimodal Inhibition of Mitral Cells Over a Respiratory Cycle. eNeuro. 2 [PubMed]

Dewell RB, Gabbiani F. (2019). Active membrane conductances and morphology of a collision detection neuron broaden its impedance profile and improve discrimination of input synchrony. Journal of neurophysiology. 122 [PubMed]

Ferguson KA, Huh CY, Amilhon B, Williams S, Skinner FK. (2013). Experimentally constrained CA1 fast-firing parvalbumin-positive interneuron network models exhibit sharp transitions into coherent high frequency rhythms. Frontiers in computational neuroscience. 7 [PubMed]

Ferguson KA, Huh CY, Amilhon B, Williams S, Skinner FK. (2014). Simple, biologically-constrained CA1 pyramidal cell models using an intact, whole hippocampus context. F1000Research. 3 [PubMed]

Gutierrez GJ, O'Leary T, Marder E. (2013). Multiple mechanisms switch an electrically coupled, synaptically inhibited neuron between competing rhythmic oscillators. Neuron. 77 [PubMed]

Hummos A, Nair SS. (2017). An integrative model of the intrinsic hippocampal theta rhythm. PloS one. 12 [PubMed]

Keane A, Henderson JA, Gong P. (2018). Dynamical patterns underlying response properties of cortical circuits. Journal of the Royal Society, Interface. 15 [PubMed]

Lee S, Jones SR. (2013). Distinguishing mechanisms of gamma frequency oscillations in human current source signals using a computational model of a laminar neocortical network. Frontiers in human neuroscience. 7 [PubMed]

McTavish TS, Migliore M, Shepherd GM, Hines ML. (2012). Mitral cell spike synchrony modulated by dendrodendritic synapse location. Frontiers in computational neuroscience. 6 [PubMed]

Mejias JF, Murray JD, Kennedy H, Wang XJ. (2016). Feedforward and feedback frequency-dependent interactions in a large-scale laminar network of the primate cortex. Science advances. 2 [PubMed]

Nandy AS, Nassi JJ, Reynolds JH. (2017). Laminar Organization of Attentional Modulation in Macaque Visual Area V4. Neuron. 93 [PubMed]

Nichols EJ, Hutt A. (2015). Neural field simulator: two-dimensional spatio-temporal dynamics involving finite transmission speed. Frontiers in neuroinformatics. 9 [PubMed]

Pouille F, McTavish TS, Hunter LE, Restrepo D, Schoppa NE. (2017). Intraglomerular gap junctions enhance interglomerular synchrony in a sparsely connected olfactory bulb network. The Journal of physiology. 595 [PubMed]

Proddutur A, Yu J, Elgammal FS, Santhakumar V. (2013). Seizure-induced alterations in fast-spiking basket cell GABA currents modulate frequency and coherence of gamma oscillation in network simulations. Chaos (Woodbury, N.Y.). 23 [PubMed]

Ricci G, Magosso E, Ursino M. (2021). The relationship between oscillations in brain regions and functional connectivity: a critical analysis with the aid of neural mass models Brain sciences. 11 [PubMed]

Rich S et al. (2019). Inhibitory Network Bistability Explains Increased Interneuronal Activity Prior to Seizure Onset. Frontiers in neural circuits. 13 [PubMed]

Sherif MA, Neymotin SA, Lytton WW. (2020). In silico hippocampal modeling for multi-target pharmacotherapy in schizophrenia. NPJ schizophrenia. 6 [PubMed]

Tchumatchenko T, Clopath C. (2014). Oscillations emerging from noise-driven steady state in networks with electrical synapses and subthreshold resonance. Nature communications. 5 [PubMed]

Tikidji-Hamburyan RA, Martínez JJ, White JA, Canavier CC. (2015). Resonant Interneurons Can Increase Robustness of Gamma Oscillations. The Journal of neuroscience : the official journal of the Society for Neuroscience. 35 [PubMed]

Wu Z, Guo A, Fu X. (2017). Generation of low-gamma oscillations in a GABAergic network model of the striatum. Neural networks : the official journal of the International Neural Network Society. 95 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.