Yartsev MM, Witter MP, Ulanovsky N. (2011). Grid cells without theta oscillations in the entorhinal cortex of bats. Nature. 479 [PubMed]

See more from authors: Yartsev MM · Witter MP · Ulanovsky N

References and models cited by this paper
References and models that cite this paper

Bush D, Burgess N. (2014). A hybrid oscillatory interference/continuous attractor network model of grid cell firing. The Journal of neuroscience : the official journal of the Society for Neuroscience. 34 [PubMed]

Bush D, Burgess N. (2020). Advantages and detection of phase coding in the absence of rhythmicity. Hippocampus. 30 [PubMed]

D'Albis T, Kempter R. (2017). A single-cell spiking model for the origin of grid-cell patterns. PLoS computational biology. 13 [PubMed]

Justus D et al. (2017). Glutamatergic synaptic integration of locomotion speed via septoentorhinal projections. Nature neuroscience. 20 [PubMed]

Pastoll H, Solanka L, van Rossum MC, Nolan MF. (2013). Feedback inhibition enables theta-nested gamma oscillations and grid firing fields. Neuron. 77 [PubMed]

Pilly PK, Grossberg S. (2013). Spiking neurons in a hierarchical self-organizing map model can learn to develop spatial and temporal properties of entorhinal grid cells and hippocampal place cells PloS one. 8 [PubMed]

Schmidt-Hieber C, Häusser M. (2013). Cellular mechanisms of spatial navigation in the medial entorhinal cortex. Nature neuroscience. 16 [PubMed]

Soman K, Chakravarthy S, Yartsev MM. (2018). A hierarchical anti-Hebbian network model for the formation of spatial cells in three-dimensional space. Nature communications. 9 [PubMed]

Zilli EA. (2012). Models of grid cell spatial firing published 2005-2011. Frontiers in neural circuits. 6 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.