Kennedy A et al. (2014). A temporal basis for predicting the sensory consequences of motor commands in an electric fish. Nature neuroscience. 17 [PubMed]

See more from authors: Kennedy A · Wayne G · Kaifosh P · Alviña K · Abbott LF · Sawtell NB

References and models cited by this paper
References and models that cite this paper

Cayco-Gajic NA, Clopath C, Silver RA. (2017). Sparse synaptic connectivity is required for decorrelation and pattern separation in feedforward networks. Nature communications. 8 [PubMed]

Hariani HN et al. (2023). A system of feed-forward cerebellar circuits that extend and diversify sensory signaling. eLife. [PubMed]

Muller SZ, Abbott LF, Sawtell NB. (2023). A Mechanism for Differential Control of Axonal and Dendritic Spiking Underlying Learning in a Cerebellum-like Circuit Curr Biol. [PubMed]

Muller SZ, Zadina AN, Abbott LF, Sawtell NB. (2019). Continual Learning in a Multi-Layer Network of an Electric Fish. Cell. 179 [PubMed]

Rössert C, Solinas S, D'Angelo E, Dean P, Porrill J. (2014). Model cerebellar granule cells can faithfully transmit modulated firing rate signals. Frontiers in cellular neuroscience. 8 [PubMed]

Simmonds B, Chacron MJ. (2015). Activation of parallel fiber feedback by spatially diffuse stimuli reduces signal and noise correlations via independent mechanisms in a cerebellum-like structure. PLoS computational biology. 11 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.