Canakci S, Toy MF, Inci AF, Liu X, Kuzum D. (2017). Computational analysis of network activity and spatial reach of sharp wave-ripples. PloS one. 12 [PubMed]

See more from authors: Canakci S · Toy MF · Inci AF · Liu X · Kuzum D

References and models cited by this paper

Bezaire MJ, Soltesz I. (2013). Quantitative assessment of CA1 local circuits: knowledge base for interneuron-pyramidal cell connectivity. Hippocampus. 23 [PubMed]

Brunel N, Wang XJ. (2003). What determines the frequency of fast network oscillations with irregular neural discharges? I. Synaptic dynamics and excitation-inhibition balance. Journal of neurophysiology. 90 [PubMed]

Buzsáki G. (1986). Hippocampal sharp waves: their origin and significance. Brain research. 398 [PubMed]

Buzsáki G. (2015). Hippocampal sharp wave-ripple: A cognitive biomarker for episodic memory and planning. Hippocampus. 25 [PubMed]

Buzsáki G, Anastassiou CA, Koch C. (2012). The origin of extracellular fields and currents--EEG, ECoG, LFP and spikes. Nature reviews. Neuroscience. 13 [PubMed]

Buzsáki G, Horváth Z, Urioste R, Hetke J, Wise K. (1992). High-frequency network oscillation in the hippocampus. Science (New York, N.Y.). 256 [PubMed]

Bédard C, Kröger H, Destexhe A. (2004). Modeling extracellular field potentials and the frequency-filtering properties of extracellular space. Biophysical journal. 86 [PubMed]

Châtillon CE et al. (2013). Influence of contact size on the detection of HFOs in human intracerebral EEG recordings. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology. 124 [PubMed]

Châtillon CÉ, Zelmann R, Bortel A, Avoli M, Gotman J. (2011). Contact size does not affect high frequency oscillation detection in intracerebral EEG recordings in a rat epilepsy model. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology. 122 [PubMed]

Csicsvari J, Hirase H, Mamiya A, Buzsáki G. (2000). Ensemble patterns of hippocampal CA3-CA1 neurons during sharp wave-associated population events. Neuron. 28 [PubMed]

Destexhe A, Bedard C. (2014). Mean-Field Formulation of Maxwell Equations to Model Electrically Inhomogeneous and Isotropic Media J Electromagn Anal Appl.. 6

Diba K, Buzsáki G. (2007). Forward and reverse hippocampal place-cell sequences during ripples. Nature neuroscience. 10 [PubMed]

Ellender TJ, Nissen W, Colgin LL, Mann EO, Paulsen O. (2010). Priming of hippocampal population bursts by individual perisomatic-targeting interneurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 30 [PubMed]

Fink CG, Gliske S, Catoni N, Stacey WC. (2015). Network Mechanisms Generating Abnormal and Normal Hippocampal High-Frequency Oscillations: A Computational Analysis. eNeuro. 2 [PubMed]

Freund TF, Buzsáki G. (1996). Interneurons of the hippocampus. Hippocampus. 6 [PubMed]

Girardeau G, Benchenane K, Wiener SI, Buzsáki G, Zugaro MB. (2009). Selective suppression of hippocampal ripples impairs spatial memory. Nature neuroscience. 12 [PubMed]

Hines ML, Morse T, Migliore M, Carnevale NT, Shepherd GM. (2004). ModelDB: A Database to Support Computational Neuroscience. Journal of computational neuroscience. 17 [PubMed]

Hájos N et al. (2009). Maintaining network activity in submerged hippocampal slices: importance of oxygen supply. The European journal of neuroscience. 29 [PubMed]

Hájos N et al. (2013). Input-output features of anatomically identified CA3 neurons during hippocampal sharp wave/ripple oscillation in vitro. The Journal of neuroscience : the official journal of the Society for Neuroscience. 33 [PubMed]

Ibarz JM, Foffani G, Cid E, Inostroza M, Menendez de la Prida L. (2010). Emergent dynamics of fast ripples in the epileptic hippocampus. The Journal of neuroscience : the official journal of the Society for Neuroscience. 30 [PubMed]

Jadhav SP, Kemere C, German PW, Frank LM. (2012). Awake hippocampal sharp-wave ripples support spatial memory. Science (New York, N.Y.). 336 [PubMed]

Karlsson MP, Frank LM. (2009). Awake replay of remote experiences in the hippocampus. Nature neuroscience. 12 [PubMed]

Klausberger T et al. (2003). Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo. Nature. 421 [PubMed]

Le Van Quyen M et al. (2008). Cell type-specific firing during ripple oscillations in the hippocampal formation of humans. The Journal of neuroscience : the official journal of the Society for Neuroscience. 28 [PubMed]

Lee AK, Wilson MA. (2002). Memory of sequential experience in the hippocampus during slow wave sleep. Neuron. 36 [PubMed]

Lempka SF, McIntyre CC. (2013). Theoretical analysis of the local field potential in deep brain stimulation applications. PloS one. 8 [PubMed]

Lindén H et al. (2013). LFPy: a tool for biophysical simulation of extracellular potentials generated by detailed model neurons. Frontiers in neuroinformatics. 7 [PubMed]

Maier N, Nimmrich V, Draguhn A. (2003). Cellular and network mechanisms underlying spontaneous sharp wave-ripple complexes in mouse hippocampal slices. The Journal of physiology. 550 [PubMed]

Malerba P, Krishnan GP, Fellous JM, Bazhenov M. (2016). Hippocampal CA1 Ripples as Inhibitory Transients. PLoS computational biology. 12 [PubMed]

Menendez de la Prida L, Staba RJ, Dian JA. (2015). Conundrums of high-frequency oscillations (80-800 Hz) in the epileptic brain. Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society. 32 [PubMed]

Moffitt MA, McIntyre CC. (2005). Model-based analysis of cortical recording with silicon microelectrodes. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology. 116 [PubMed]

Moulin C et al. (2008). A new 3-D finite-element model based on thin-film approximation for microelectrode array recording of extracellular action potential. IEEE transactions on bio-medical engineering. 55 [PubMed]

Nelson MJ, Pouget P. (2010). Do electrode properties create a problem in interpreting local field potential recordings? Journal of neurophysiology. 103 [PubMed]

Ness TV et al. (2015). Modelling and Analysis of Electrical Potentials Recorded in Microelectrode Arrays (MEAs). Neuroinformatics. 13 [PubMed]

Nunez PL, Srinivasan R. (2006). Electric fields of the brain: the neurophysics of EEG 2nd ed..

O`Keefe J, Nadel L. (1978). The Hippocampus as a Cognitive Map.

Obien ME, Deligkaris K, Bullmann T, Bakkum DJ, Frey U. (2014). Revealing neuronal function through microelectrode array recordings. Frontiers in neuroscience. 8 [PubMed]

Patel J, Schomburg EW, Berényi A, Fujisawa S, Buzsáki G. (2013). Local generation and propagation of ripples along the septotemporal axis of the hippocampus. The Journal of neuroscience : the official journal of the Society for Neuroscience. 33 [PubMed]

Pettersen KH, Einevoll GT. (2008). Amplitude variability and extracellular low-pass filtering of neuronal spikes. Biophysical journal. 94 [PubMed]

Plonsey R, Malmivuo J. (1995). Bioelectromagnetism:Principles and Applications of Bioelectric and Biomagnetic Fields.

Schlingloff D, Káli S, Freund TF, Hájos N, Gulyás AI. (2014). Mechanisms of sharp wave initiation and ripple generation. The Journal of neuroscience : the official journal of the Society for Neuroscience. 34 [PubMed]

Stacey WC, Lazarewicz MT, Litt B. (2009). Synaptic noise and physiological coupling generate high-frequency oscillations in a hippocampal computational model. Journal of neurophysiology. 102 [PubMed]

Stark E et al. (2014). Pyramidal cell-interneuron interactions underlie hippocampal ripple oscillations. Neuron. 83 [PubMed]

Sullivan D et al. (2011). Relationships between hippocampal sharp waves, ripples, and fast gamma oscillation: influence of dentate and entorhinal cortical activity. The Journal of neuroscience : the official journal of the Society for Neuroscience. 31 [PubMed]

Taxidis J, Anastassiou CA, Diba K, Koch C. (2015). Local Field Potentials Encode Place Cell Ensemble Activation during Hippocampal Sharp Wave Ripples. Neuron. 87 [PubMed]

Taxidis J, Coombes S, Mason R, Owen MR. (2012). Modeling sharp wave-ripple complexes through a CA3-CA1 network model with chemical synapses. Hippocampus. 22 [PubMed]

Taxidis J, Mizuseki K, Mason R, Owen MR. (2013). Influence of slow oscillation on hippocampal activity and ripples through cortico-hippocampal synaptic interactions, analyzed by a cortical-CA3-CA1 network model. Frontiers in computational neuroscience. 7 [PubMed]

Tort AB, Rotstein HG, Dugladze T, Gloveli T, Kopell NJ. (2007). On the formation of gamma-coherent cell assemblies by oriens lacunosum-moleculare interneurons in the hippocampus. Proceedings of the National Academy of Sciences of the United States of America. 104 [PubMed]

Traub RD, Bibbig A. (2000). A model of high-frequency ripples in the hippocampus based on synaptic coupling plus axon-axon gap junctions between pyramidal neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 20 [PubMed]

Traub RD, Schmitz D, Maier N, Whittington MA, Draguhn A. (2012). Axonal properties determine somatic firing in a model of in vitro CA1 hippocampal sharp wave/ripples and persistent gamma oscillations. The European journal of neuroscience. 36 [PubMed]

Traub RD, Wong RK. (1982). Cellular mechanism of neuronal synchronization in epilepsy. Science (New York, N.Y.). 216 [PubMed]

Treves A, Rolls ET. (1994). Computational analysis of the role of the hippocampus in memory. Hippocampus. 4 [PubMed]

Wilson MA, McNaughton BL. (1994). Reactivation of hippocampal ensemble memories during sleep. Science (New York, N.Y.). 265 [PubMed]

Worrell GA et al. (2008). High-frequency oscillations in human temporal lobe: simultaneous microwire and clinical macroelectrode recordings. Brain : a journal of neurology. 131 [PubMed]

Ylinen A et al. (1995). Sharp wave-associated high-frequency oscillation (200 Hz) in the intact hippocampus: network and intracellular mechanisms. The Journal of neuroscience : the official journal of the Society for Neuroscience. 15 [PubMed]

Łęski S, Lindén H, Tetzlaff T, Pettersen KH, Einevoll GT. (2013). Frequency dependence of signal power and spatial reach of the local field potential. PLoS computational biology. 9 [PubMed]

References and models that cite this paper
This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.