Kandel A, Buzsáki G. (1997). Cellular-synaptic generation of sleep spindles, spike-and-wave discharges, and evoked thalamocortical responses in the neocortex of the rat. The Journal of neuroscience : the official journal of the Society for Neuroscience. 17 [PubMed]

See more from authors: Kandel A · Buzsáki G

References and models cited by this paper
References and models that cite this paper

Bazhenov M, Timofeev I, Steriade M, Sejnowski TJ. (1998). Computational models of thalamocortical augmenting responses. The Journal of neuroscience : the official journal of the Society for Neuroscience. 18 [PubMed]

Chen M et al. (2015). Critical Roles of the Direct GABAergic Pallido-cortical Pathway in Controlling Absence Seizures. PLoS computational biology. 11 [PubMed]

Houweling AR et al. (2002). Frequency-selective augmenting responses by short-term synaptic depression in cat neocortex. The Journal of physiology. 542 [PubMed]

Jones SR et al. (2009). Quantitative analysis and biophysically realistic neural modeling of the MEG mu rhythm: rhythmogenesis and modulation of sensory-evoked responses. Journal of neurophysiology. 102 [PubMed]

Jones SR, Pritchett DL, Stufflebeam SM, Hämäläinen M, Moore CI. (2007). Neural correlates of tactile detection: a combined magnetoencephalography and biophysically based computational modeling study. The Journal of neuroscience : the official journal of the Society for Neuroscience. 27 [PubMed]

Maex R, De Schutter E. (2003). Resonant synchronization in heterogeneous networks of inhibitory neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 23 [PubMed]

Munro E, Börgers C. (2010). Mechanisms of very fast oscillations in networks of axons coupled by gap junctions. Journal of computational neuroscience. 28 [PubMed]

Parasuram H et al. (2016). Computational Modeling of Single Neuron Extracellular Electric Potentials and Network Local Field Potentials using LFPsim. Frontiers in computational neuroscience. 10 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.