Altoè A, Pulkki V, Verhulst S. (2014). Transmission line cochlear models: improved accuracy and efficiency. The Journal of the Acoustical Society of America. 136 [PubMed]

See more from authors: Altoè A · Pulkki V · Verhulst S

References and models cited by this paper

Catmull E, Rom R. (1974). A class of local interpolating splines Computer Aided Geometric Design.

Cohen-Schotanus J, Reinders JJ, Agsteribbe J, Meyboom-de Jong B. (2002). [Physicians for ten years: a longitudinal survey of the career development of physicians who began their studies in Groningen, the Netherlands]. Nederlands tijdschrift voor geneeskunde. 146 [PubMed]

DeRose TD, Barsky BA. (1988). Geometric continuity, shape parameters, and geometric constructions for catmull-rom splines ACM T. Graphic. 7

Diependaal RJ, Duifhuis H, Hoogstraten HW, Viergever MA. (1987). Numerical methods for solving one-dimensional cochlear models in the time domain. The Journal of the Acoustical Society of America. 82 [PubMed]

Dormand JR, Prince PJ. (1980). A family of embedded Runge-Kuttaformulae J Comput Appl Math. 6

Elliott SJ, Ku EM, Lineton B. (2007). A state space model for cochlear mechanics. The Journal of the Acoustical Society of America. 122 [PubMed]

Epp B, Verhey JL, Mauermann M. (2010). Modeling cochlear dynamics: interrelation between cochlea mechanics and psychoacoustics. The Journal of the Acoustical Society of America. 128 [PubMed]

Greenwood DD. (1961). Critical bandwidth and the frequency coordinates of the basilar membrane J. Acoust. Soc. Am.. 33

Moleti A, Paternoster N, Bertaccini D, Sisto R, Sanjust F. (2009). Otoacoustic emissions in time-domain solutions of nonlinear non-local cochlear models. The Journal of the Acoustical Society of America. 126 [PubMed]

Rapson MJ, Tapson JC, Karpul D. (2012). Unification and extension of monolithic state space and iterative cochlear models. The Journal of the Acoustical Society of America. 131 [PubMed]

Santurette S, Dau T, Oxenham AJ. (2012). On the possibility of a place code for the low pitch of high-frequency complex tones. The Journal of the Acoustical Society of America. 132 [PubMed]

Shera CA. (2001). Intensity-invariance of fine time structure in basilar-membrane click responses: implications for cochlear mechanics. The Journal of the Acoustical Society of America. 110 [PubMed]

Søndergaard P, Majdak P. (2013). The auditory modeling toolbox The Technology of Binaural Listening.

Takanen M, Santala O, Pulkki V. (2014). Visualization of functional count-comparison-based binaural auditory model output. Hearing research. 309 [PubMed]

Verhulst S. (2010). Characterizing and Modeling Dynamic Processes in the Cochlea Using Otoacoustic Emissions. Ph.D. thesis.

Verhulst S, Dau T, Shera CA. (2012). Nonlinear time-domain cochlear model for transient stimulation and human otoacoustic emission. The Journal of the Acoustical Society of America. 132 [PubMed]

Verhulst S, Mehraei G, Bharadwaj H, Shinn-Cunningham B. (2013). Understanding hearing impairment through model predictions of brainstem responses Proc. Meet. Acoust.. 19

Zweig G. (1991). Finding the impedance of the organ of Corti. The Journal of the Acoustical Society of America. 89 [PubMed]

References and models that cite this paper

Verhulst S, Altoè A, Vasilkov V. (2018). Computational modeling of the human auditory periphery: Auditory-nerve responses, evoked potentials and hearing loss. Hearing research. 360 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.