Wang XJ. (1999). Synaptic basis of cortical persistent activity: the importance of NMDA receptors to working memory. The Journal of neuroscience : the official journal of the Society for Neuroscience. 19 [PubMed]

See more from authors: Wang XJ

References and models cited by this paper
References and models that cite this paper

Aksoy T, Shouval HZ. (2022). Active intrinsic conductances in recurrent networks allow for long-lasting transients and sustained activity with realistic firing rates as well as robust plasticity Journal of computational neuroscience. 50 [PubMed]

Alvarez FP, Destexhe A. (2004). Simulating cortical network activity states constrained by intracellular recordings. Neurocomputing. 58

Aviel Y, Horn D, Abeles M. (2005). Memory capacity of balanced networks. Neural computation. 17 [PubMed]

Bartolozzi C, Indiveri G. (2007). Synaptic dynamics in analog VLSI. Neural computation. 19 [PubMed]

Brunel N, Wang XJ. (2001). Effects of neuromodulation in a cortical network model of object working memory dominated by recurrent inhibition. Journal of computational neuroscience. 11 [PubMed]

Budd JM. (2005). Theta oscillations by synaptic excitation in a neocortical circuit model. Proceedings. Biological sciences. 272 [PubMed]

Cai D, Rangan AV, McLaughlin DW. (2005). Architectural and synaptic mechanisms underlying coherent spontaneous activity in V1. Proceedings of the National Academy of Sciences of the United States of America. 102 [PubMed]

Calvin OL, Redish AD. (2021). Global disruption in excitation-inhibition balance can cause localized network dysfunction and Schizophrenia-like context-integration deficits PLoS computational biology. 17 [PubMed]

Cressman JR, Ullah G, Ziburkus J, Schiff SJ, Barreto E. (2009). The influence of sodium and potassium dynamics on excitability, seizures, and the stability of persistent states: I. Single neuron dynamics. Journal of computational neuroscience. 26 [PubMed]

Destexhe A, Rudolph M, Paré D. (2003). The high-conductance state of neocortical neurons in vivo. Nature reviews. Neuroscience. 4 [PubMed]

Drew PJ, Abbott LF. (2003). Model of song selectivity and sequence generation in area HVc of the songbird. Journal of neurophysiology. 89 [PubMed]

Durstewitz D, Gabriel T. (2007). Dynamical basis of irregular spiking in NMDA-driven prefrontal cortex neurons. Cerebral cortex (New York, N.Y. : 1991). 17 [PubMed]

Ermentrout GB, Terman DH. (2010). Mathematical Foundations of Neuroscience Interdisciplinary Applied Mathematics. 35

Golomb D, Shedmi A, Curtu R, Ermentrout GB. (2006). Persistent synchronized bursting activity in cortical tissues with low magnesium concentration: a modeling study. Journal of neurophysiology. 95 [PubMed]

Graupner M, Brunel N. (2007). STDP in a bistable synapse model based on CaMKII and associated signaling pathways. PLoS computational biology. 3 [PubMed]

Gutkin BS, Laing CR, Colby CL, Chow CC, Ermentrout GB. (2001). Turning on and off with excitation: the role of spike-timing asynchrony and synchrony in sustained neural activity. Journal of computational neuroscience. 11 [PubMed]

Hansel D, Mato G. (2003). Asynchronous states and the emergence of synchrony in large networks of interacting excitatory and inhibitory neurons. Neural computation. 15 [PubMed]

Hayut I, Fanselow EE, Connors BW, Golomb D. (2011). LTS and FS inhibitory interneurons, short-term synaptic plasticity, and cortical circuit dynamics. PLoS computational biology. 7 [PubMed]

Hazy TE, Frank MJ, O'reilly RC. (2007). Towards an executive without a homunculus: computational models of the prefrontal cortex/basal ganglia system. Philosophical transactions of the Royal Society of London. Series B, Biological sciences. 362 [PubMed]

Huang CH, Huang YT, Chen CC, Chan CK. (2017). Propagation and synchronization of reverberatory bursts in developing cultured networks. Journal of computational neuroscience. 42 [PubMed]

Joelving FC, Compte A, Constantinidis C. (2007). Temporal properties of posterior parietal neuron discharges during working memory and passive viewing. Journal of neurophysiology. 97 [PubMed]

Kepecs A, Raghavachari S. (2007). Gating information by two-state membrane potential fluctuations. Journal of neurophysiology. 97 [PubMed]

Konstantoudaki X, Papoutsi A, Chalkiadaki K, Poirazi P, Sidiropoulou K. (2014). Modulatory effects of inhibition on persistent activity in a cortical microcircuit model. Frontiers in neural circuits. 8 [PubMed]

Laing CR, Chow CC. (2002). A spiking neuron model for binocular rivalry. Journal of computational neuroscience. 12 [PubMed]

Laing CR, Longtin A. (2003). Dynamics of deterministic and stochastic paired excitatory-inhibitory delayed feedback. Neural computation. 15 [PubMed]

Latham PE, Nirenberg S. (2004). Computing and stability in cortical networks. Neural computation. 16 [PubMed]

Lim S, Goldman MS. (2013). Balanced cortical microcircuitry for maintaining information in working memory. Nature neuroscience. 16 [PubMed]

Lim S, Goldman MS. (2014). Balanced cortical microcircuitry for spatial working memory based on corrective feedback control. The Journal of neuroscience : the official journal of the Society for Neuroscience. 34 [PubMed]

Ly C, Tranchina D. (2007). Critical analysis of dimension reduction by a moment closure method in a population density approach to neural network modeling. Neural computation. 19 [PubMed]

Machens CK, Brody CD. (2008). Design of continuous attractor networks with monotonic tuning using a symmetry principle. Neural computation. 20 [PubMed]

Macoveanu J, Klingberg T, Tegnér J. (2006). A biophysical model of multiple-item working memory: a computational and neuroimaging study. Neuroscience. 141 [PubMed]

Mejías JF, Wang XJ. (2022). Mechanisms of distributed working memory in a large-scale network of macaque neocortex eLife. 11 [PubMed]

Miller P, Wang XJ. (2006). Stability of discrete memory states to stochastic fluctuations in neuronal systems. Chaos (Woodbury, N.Y.). 16 [PubMed]

Moreno-Bote R, Rinzel J, Rubin N. (2007). Noise-induced alternations in an attractor network model of perceptual bistability. Journal of neurophysiology. 98 [PubMed]

Neymotin SA et al. (2016). Calcium regulation of HCN channels supports persistent activity in a multiscale model of neocortex. Neuroscience. 316 [PubMed]

O'Reilly RC, Frank MJ. (2006). Making working memory work: a computational model of learning in the prefrontal cortex and basal ganglia. Neural computation. 18 [PubMed]

O`Reilly RC, Frank MJ. (2005). Making Working Memory Work: A Computational Model of Learning in the Prefrontal Cortex and Basal Ganglia Neural Comput. 18

Papoutsi A, Sidiropoulou K, Cutsuridis V, Poirazi P. (2013). Induction and modulation of persistent activity in a layer V PFC microcircuit model. Frontiers in neural circuits. 7 [PubMed]

Papoutsi A, Sidiropoulou K, Poirazi P. (2014). Dendritic nonlinearities reduce network size requirements and mediate ON and OFF states of persistent activity in a PFC microcircuit model. PLoS computational biology. 10 [PubMed]

Pilly PK, Grossberg S. (2013). Spiking neurons in a hierarchical self-organizing map model can learn to develop spatial and temporal properties of entorhinal grid cells and hippocampal place cells PloS one. 8 [PubMed]

Rangan AV, Cai D. (2007). Fast numerical methods for simulating large-scale integrate-and-fire neuronal networks. Journal of computational neuroscience. 22 [PubMed]

Rangan AV, Cai D, McLaughlin DW. (2005). Modeling the spatiotemporal cortical activity associated with the line-motion illusion in primary visual cortex. Proceedings of the National Academy of Sciences of the United States of America. 102 [PubMed]

Renart A, Moreno-Bote R, Wang XJ, Parga N. (2007). Mean-driven and fluctuation-driven persistent activity in recurrent networks. Neural computation. 19 [PubMed]

Romani S, Amit DJ, Mongillo G. (2006). Mean-field analysis of selective persistent activity in presence of short-term synaptic depression. Journal of computational neuroscience. 20 [PubMed]

Schmidt-Hieber C et al. (2017). Active dendritic integration as a mechanism for robust and precise grid cell firing. Nature neuroscience. 20 [PubMed]

Shelley MJ, Tao L. (2001). Efficient and accurate time-stepping schemes for integrate-and-fire neuronal networks. Journal of computational neuroscience. 11 [PubMed]

Sidiropoulou K, Poirazi P. (2012). Predictive features of persistent activity emergence in regular spiking and intrinsic bursting model neurons. PLoS computational biology. 8 [PubMed]

Singh R, Eliasmith C. (2006). Higher-dimensional neurons explain the tuning and dynamics of working memory cells. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]

Song P, Wang XJ. (2005). Angular path integration by moving "hill of activity": a spiking neuron model without recurrent excitation of the head-direction system. The Journal of neuroscience : the official journal of the Society for Neuroscience. 25 [PubMed]

Teramae JN, Fukai T. (2005). A Cellular Mechanism for Graded Persistent Activity in a Model Neuron and Its Implications in Working Memory Journal of computational neuroscience. 18 [PubMed]

Ullah G, Cressman JR, Barreto E, Schiff SJ. (2009). The influence of sodium and potassium dynamics on excitability, seizures, and the stability of persistent states. II. Network and glial dynamics. Journal of computational neuroscience. 26 [PubMed]

Wong KF, Wang XJ. (2006). A recurrent network mechanism of time integration in perceptual decisions. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.