Markram H. (1997). A network of tufted layer 5 pyramidal neurons. Cerebral cortex (New York, N.Y. : 1991). 7 [PubMed]

See more from authors: Markram H

References and models cited by this paper
References and models that cite this paper

Fuhrmann G, Segev I, Markram H, Tsodyks M. (2002). Coding of temporal information by activity-dependent synapses. Journal of neurophysiology. 87 [PubMed]

Karameh FN, Dahleh MA, Brown EN, Massaquoi SG. (2006). Modeling the contribution of lamina 5 neuronal and network dynamics to low frequency EEG phenomena. Biological cybernetics. 95 [PubMed]

Mikula S, Niebur E. (2003). Synaptic depression leads to nonmonotonic frequency dependence in the coincidence detector. Neural computation. 15 [PubMed]

Papoutsi A, Kastellakis G, Poirazi P. (2017). Basal tree complexity shapes functional pathways in the prefrontal cortex. Journal of neurophysiology. 118 [PubMed]

Papoutsi A, Sidiropoulou K, Cutsuridis V, Poirazi P. (2013). Induction and modulation of persistent activity in a layer V PFC microcircuit model. Frontiers in neural circuits. 7 [PubMed]

Sun HY, Lyons SA, Dobrunz LE. (2005). Mechanisms of target-cell specific short-term plasticity at Schaffer collateral synapses onto interneurones versus pyramidal cells in juvenile rats. The Journal of physiology. 568 [PubMed]

Testa-Silva G et al. (2012). Hyperconnectivity and slow synapses during early development of medial prefrontal cortex in a mouse model for mental retardation and autism. Cerebral cortex (New York, N.Y. : 1991). 22 [PubMed]

Thomson AM. (2003). Presynaptic frequency- and pattern-dependent filtering. Journal of computational neuroscience. 15 [PubMed]

Yang CR, Seamans JK, Gorelova N. (1999). Developing a neuronal model for the pathophysiology of schizophrenia based on the nature of electrophysiological actions of dopamine in the prefrontal cortex. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology. 21 [PubMed]

Yang Z, Hennig MH, Postlethwaite M, Forsythe ID, Graham BP. (2009). Wide-band information transmission at the calyx of Held. Neural computation. 21 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.