Tiesinga PH, José JV, Sejnowski TJ. (2000). Comparison of current-driven and conductance-driven neocortical model neurons with Hodgkin-Huxley voltage-gated channels. Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics. 62 [PubMed]

See more from authors: Tiesinga PH · José JV · Sejnowski TJ

References and models cited by this paper
References and models that cite this paper

Avella Gonzalez OJ et al. (2012). External drive to inhibitory cells induces alternating episodes of high- and low-amplitude oscillations. PLoS computational biology. 8 [PubMed]

Berends M, Maex R, De Schutter E. (2005). The effect of NMDA receptors on gain modulation. Neural computation. 17 [PubMed]

Chance FS. (2007). Receiver operating characteristic (ROC) analysis for characterizing synaptic efficacy. Journal of neurophysiology. 97 [PubMed]

Chance FS, Abbott LF, Reyes AD. (2002). Gain modulation from background synaptic input. Neuron. 35 [PubMed]

Destexhe A, Rudolph M. (2004). Extracting information from the power spectrum of synaptic noise. Journal of computational neuroscience. 17 [PubMed]

Destexhe A, Rudolph M, Paré D. (2003). The high-conductance state of neocortical neurons in vivo. Nature reviews. Neuroscience. 4 [PubMed]

Fellous JM, Rudolph M, Destexhe A, Sejnowski TJ. (2003). Synaptic background noise controls the input/output characteristics of single cells in an in vitro model of in vivo activity. Neuroscience. 122 [PubMed]

Latham PE, Nirenberg S. (2004). Computing and stability in cortical networks. Neural computation. 16 [PubMed]

Masuda N. (2005). Simultaneous Rate-Synchrony Codes in Populations of Spiking Neurons Neural Comput. 18

Meffin H, Burkitt AN, Grayden DB. (2004). An analytical model for the "large, fluctuating synaptic conductance state" typical of neocortical neurons in vivo. Journal of computational neuroscience. 16 [PubMed]

Mehaffey WH, Doiron B, Maler L, Turner RW. (2005). Deterministic multiplicative gain control with active dendrites. The Journal of neuroscience : the official journal of the Society for Neuroscience. 25 [PubMed]

Prescott SA, De Koninck Y. (2003). Gain control of firing rate by shunting inhibition: roles of synaptic noise and dendritic saturation. Proceedings of the National Academy of Sciences of the United States of America. 100 [PubMed]

Reeke GN, Coop AD. (2004). Estimating the temporal interval entropy of neuronal discharge. Neural computation. 16 [PubMed]

Richardson MJ, Gerstner W. (2005). Synaptic shot noise and conductance fluctuations affect the membrane voltage with equal significance. Neural computation. 17 [PubMed]

Rowat P. (2007). Interspike interval statistics in the stochastic Hodgkin-Huxley model: coexistence of gamma frequency bursts and highly irregular firing. Neural computation. 19 [PubMed]

Rubin J, Josić K. (2007). The firing of an excitable neuron in the presence of stochastic trains of strong synaptic inputs. Neural computation. 19 [PubMed]

Rudolph M, Destexhe A. (2003). The discharge variability of neocortical neurons during high-conductance states. Neuroscience. 119 [PubMed]

Rudolph M, Destexhe A. (2003). Characterization of subthreshold voltage fluctuations in neuronal membranes. Neural computation. 15 [PubMed]

Salinas E, Sejnowski TJ. (2001). Correlated neuronal activity and the flow of neural information. Nature reviews. Neuroscience. 2 [PubMed]

Sripati AP, Johnson KO. (2006). Dynamic gain changes during attentional modulation. Neural computation. 18 [PubMed]

Tiesinga PH. (2005). Stimulus competition by inhibitory interference. Neural computation. 17 [PubMed]

Tiesinga PH, Fellous JM, José JV, Sejnowski TJ. (2002). Information transfer in entrained cortical neurons. Network (Bristol, England). 13 [PubMed]

Tiesinga PH, Sejnowski TJ. (2004). Rapid temporal modulation of synchrony by competition in cortical interneuron networks. Neural computation. 16 [PubMed]

Tikidji-Hamburyan RA, Canavier CC. (2020). Shunting Inhibition Improves Synchronization in Heterogeneous Inhibitory Interneuronal Networks with Type 1 Excitability Whereas Hyperpolarizing Inhibition is Better for Type 2 Excitability. eNeuro. 7 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.