Sato F, Lavallée P, Lévesque M, Parent A. (2000). Single-axon tracing study of neurons of the external segment of the globus pallidus in primate. The Journal of comparative neurology. 417 [PubMed]

See more from authors: Sato F · Lavallée P · Lévesque M · Parent A

References and models cited by this paper
References and models that cite this paper

Chan CS, Shigemoto R, Mercer JN, Surmeier DJ. (2004). HCN2 and HCN1 channels govern the regularity of autonomous pacemaking and synaptic resetting in globus pallidus neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 24 [PubMed]

Corbit VL et al. (2016). Pallidostriatal Projections Promote ß Oscillations in a Dopamine-Depleted Biophysical Network Model. The Journal of neuroscience : the official journal of the Society for Neuroscience. 36 [PubMed]

Edgerton JR, Hanson JE, Günay C, Jaeger D. (2010). Dendritic sodium channels regulate network integration in globus pallidus neurons: a modeling study. The Journal of neuroscience : the official journal of the Society for Neuroscience. 30 [PubMed]

Edgerton JR, Jaeger D. (2011). Dendritic sodium channels promote active decorrelation and reduce phase locking to parkinsonian input oscillations in model globus pallidus neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 31 [PubMed]

Girard B, Tabareau N, Pham QC, Berthoz A, Slotine JJ. (2008). Where neuroscience and dynamic system theory meet autonomous robotics: a contracting basal ganglia model for action selection. Neural networks : the official journal of the International Neural Network Society. 21 [PubMed]

Johnson MD, McIntyre CC. (2008). Quantifying the neural elements activated and inhibited by globus pallidus deep brain stimulation. Journal of neurophysiology. 100 [PubMed]

Liénard J, Girard B. (2014). A biologically constrained model of the whole basal ganglia addressing the paradoxes of connections and selection. Journal of computational neuroscience. 36 [PubMed]

So RQ, Kent AR, Grill WM. (2012). Relative contributions of local cell and passing fiber activation and silencing to changes in thalamic fidelity during deep brain stimulation and lesioning: a computational modeling study. Journal of computational neuroscience. 32 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.