Lukasiewicz P, Werblin F. (1988). A slowly inactivating potassium current truncates spike activity in ganglion cells of the tiger salamander retina. The Journal of neuroscience : the official journal of the Society for Neuroscience. 8 [PubMed]

See more from authors: Lukasiewicz P · Werblin F

References and models cited by this paper
References and models that cite this paper

Bieda MC, Copenhagen DR. (2000). Inhibition is not required for the production of transient spiking responses from retinal ganglion cells. Visual neuroscience. 17 [PubMed]

Fohlmeister JF, Miller RF. (1997). Mechanisms by which cell geometry controls repetitive impulse firing in retinal ganglion cells. Journal of neurophysiology. 78 [PubMed]

Fohlmeister JF, Miller RF. (1997). Impulse encoding mechanisms of ganglion cells in the tiger salamander retina. Journal of neurophysiology. 78 [PubMed]

Henderson D, Miller RF. (2003). Evidence for low-voltage-activated (LVA) calcium currents in the dendrites of tiger salamander retinal ganglion cells. Visual neuroscience. 20 [PubMed]

Henderson D, Miller RF. (2007). Low-voltage activated calcium currents in ganglion cells of the tiger salamander retina: experiment and simulation. Visual neuroscience. 24 [PubMed]

Sheasby BW, Fohlmeister JF. (1999). Impulse encoding across the dendritic morphologies of retinal ganglion cells. Journal of neurophysiology. 81 [PubMed]

Velte TJ, Miller RF. (1996). Computer simulations of voltage clamping retinal ganglion cells through whole-cell electrodes in the soma. Journal of neurophysiology. 75 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.