Magleby KL, Blatz AL. (1987). Calcium-activated potassium channels Trends Neurosci. 10

See more from authors: Magleby KL · Blatz AL

References and models cited by this paper
References and models that cite this paper

Engel J, Schultens HA, Schild D. (1999). Small conductance potassium channels cause an activity-dependent spike frequency adaptation and make the transfer function of neurons logarithmic. Biophysical journal. 76 [PubMed]

Gu N, Vervaeke K, Storm JF. (2007). BK potassium channels facilitate high-frequency firing and cause early spike frequency adaptation in rat CA1 hippocampal pyramidal cells. The Journal of physiology. 580 [PubMed]

Shao LR, Halvorsrud R, Borg-Graham L, Storm JF. (1999). The role of BK-type Ca2+-dependent K+ channels in spike broadening during repetitive firing in rat hippocampal pyramidal cells. The Journal of physiology. 521 Pt 1 [PubMed]

Shapiro BE. (2001). Osmotic forces and gap junctions in spreading depression: a computational model. Journal of computational neuroscience. 10 [PubMed]

Stanley DA, Bardakjian BL, Spano ML, Ditto WL. (2011). Stochastic amplification of calcium-activated potassium currents in Ca2+ microdomains. Journal of computational neuroscience. 31 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.