Wilson CJ, Callaway JC. (2000). Coupled oscillator model of the dopaminergic neuron of the substantia nigra. Journal of neurophysiology. 83 [PubMed]

See more from authors: Wilson CJ · Callaway JC

References and models cited by this paper
References and models that cite this paper

Canavier CC, Landry RS. (2006). An increase in AMPA and a decrease in SK conductance increase burst firing by different mechanisms in a model of a dopamine neuron in vivo. Journal of neurophysiology. 96 [PubMed]

Canavier CC, Oprisan SA, Callaway JC, Ji H, Shepard PD. (2007). Computational model predicts a role for ERG current in repolarizing plateau potentials in dopamine neurons: implications for modulation of neuronal activity. Journal of neurophysiology. 98 [PubMed]

Chan CS et al. (2007). 'Rejuvenation' protects neurons in mouse models of Parkinson's disease. Nature. 447 [PubMed]

Dougalis AG, Matthews GAC, Liss B, Ungless MA. (2017). Ionic currents influencing spontaneous firing and pacemaker frequency in dopamine neurons of the ventrolateral periaqueductal gray and dorsal raphe nucleus (vlPAG/DRN): A voltage-clamp and computational modelling study. Journal of computational neuroscience. 42 [PubMed]

Knowlton C, Kutterer S, Roeper J, Canavier CC. (2018). Calcium dynamics control K-ATP channel-mediated bursting in substantia nigra dopamine neurons: a combined experimental and modeling study. Journal of neurophysiology. 119 [PubMed]

Komendantov AO, Komendantova OG, Johnson SW, Canavier CC. (2004). A modeling study suggests complementary roles for GABAA and NMDA receptors and the SK channel in regulating the firing pattern in midbrain dopamine neurons. Journal of neurophysiology. 91 [PubMed]

Komendantov AO, Trayanova NA, Tasker JG. (2007). Somato-dendritic mechanisms underlying the electrophysiological properties of hypothalamic magnocellular neuroendocrine cells: a multicompartmental model study. Journal of computational neuroscience. 23 [PubMed]

Kuznetsova AY, Huertas MA, Kuznetsov AS, Paladini CA, Canavier CC. (2010). Regulation of firing frequency in a computational model of a midbrain dopaminergic neuron. Journal of computational neuroscience. 28 [PubMed]

Medvedev GS, Wilson CJ, Callaway JC, Kopell N. (2003). Dendritic Synchrony and Transient Dynamics in a Coupled Oscillator Model of the Dopaminergic Neuron Journal of computational neuroscience. 15 [PubMed]

Meza RC, López-Jury L, Canavier CC, Henny P. (2018). Role of the Axon Initial Segment in the Control of Spontaneous Frequency of Nigral Dopaminergic Neurons In Vivo. The Journal of neuroscience : the official journal of the Society for Neuroscience. 38 [PubMed]

Morozova EO et al. (2016). Contribution of synchronized GABAergic neurons to dopaminergic neuron firing and bursting. Journal of neurophysiology. 116 [PubMed]

Moubarak E et al. (2019). Robustness to Axon Initial Segment Variation Is Explained by Somatodendritic Excitability in Rat Substantia Nigra Dopaminergic Neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 39 [PubMed]

Roper P, Callaway J, Shevchenko T, Teruyama R, Armstrong W. (2003). AHP's, HAP's and DAP's: how potassium currents regulate the excitability of rat supraoptic neurones. Journal of computational neuroscience. 15 [PubMed]

Rumbell T, Kozloski J. (2019). Dimensions of control for subthreshold oscillations and spontaneous firing in dopamine neurons PLOS Computational Biology. 15

Solinas S et al. (2007). Computational reconstruction of pacemaking and intrinsic electroresponsiveness in cerebellar Golgi cells. Frontiers in cellular neuroscience. 1 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.