Schiller J, Helmchen F, Sakmann B. (1995). Spatial profile of dendritic calcium transients evoked by action potentials in rat neocortical pyramidal neurones. The Journal of physiology. 487 ( Pt 3) [PubMed]

See more from authors: Schiller J · Helmchen F · Sakmann B

References and models cited by this paper
References and models that cite this paper

Almog M, Korngreen A. (2014). A Quantitative Description of Dendritic Conductances and Its Application to Dendritic Excitation in Layer 5 Pyramidal Neurons The Journal of neuroscience : the official journal of the Society for Neuroscience. 34 [PubMed]

Anwar H et al. (2014). Dendritic diameters affect the spatial variability of intracellular calcium dynamics in computer models. Frontiers in cellular neuroscience. 8 [PubMed]

Durstewitz D, Seamans JK, Sejnowski TJ. (2000). Dopamine-mediated stabilization of delay-period activity in a network model of prefrontal cortex. Journal of neurophysiology. 83 [PubMed]

Elaagouby A, Yuste R. (1999). Role of calcium electrogenesis in apical dendrites: generation of intrinsic oscillations by an axial current. Journal of computational neuroscience. 7 [PubMed]

Häusser M, Spruston N, Stuart GJ. (2000). Diversity and dynamics of dendritic signaling. Science (New York, N.Y.). 290 [PubMed]

Häusser M, Stuart G, Racca C, Sakmann B. (1995). Axonal initiation and active dendritic propagation of action potentials in substantia nigra neurons. Neuron. 15 [PubMed]

Korngreen A, Sakmann B. (2000). Voltage-gated K+ channels in layer 5 neocortical pyramidal neurones from young rats: subtypes and gradients. The Journal of physiology. 525 Pt 3 [PubMed]

Liu YH, Wang XJ. (2001). Spike-frequency adaptation of a generalized leaky integrate-and-fire model neuron. Journal of computational neuroscience. 10 [PubMed]

Mel BW, Ruderman DL, Archie KA. (1998). Translation-invariant orientation tuning in visual "complex" cells could derive from intradendritic computations. The Journal of neuroscience : the official journal of the Society for Neuroscience. 18 [PubMed]

Murakami S, Okada Y. (2006). Contributions of principal neocortical neurons to magnetoencephalography and electroencephalography signals. The Journal of physiology. 575 [PubMed]

Nevian T, Larkum ME, Polsky A, Schiller J. (2007). Properties of basal dendrites of layer 5 pyramidal neurons: a direct patch-clamp recording study. Nature neuroscience. 10 [PubMed]

Paré D, Lang EJ, Destexhe A. (1998). Inhibitory control of somatodendritic interactions underlying action potentials in neocortical pyramidal neurons in vivo: an intracellular and computational study. Neuroscience. 84 [PubMed]

Rapp M, Yarom Y, Segev I. (1996). Modeling back propagating action potential in weakly excitable dendrites of neocortical pyramidal cells. Proceedings of the National Academy of Sciences of the United States of America. 93 [PubMed]

Rhodes P. (2006). The properties and implications of NMDA spikes in neocortical pyramidal cells. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]

Rhodes PA, Llinás RR. (2001). Apical tuft input efficacy in layer 5 pyramidal cells from rat visual cortex. The Journal of physiology. 536 [PubMed]

Schaefer AT, Larkum ME, Sakmann B, Roth A. (2003). Coincidence detection in pyramidal neurons is tuned by their dendritic branching pattern. Journal of neurophysiology. 89 [PubMed]

Stanley DA, Bardakjian BL, Spano ML, Ditto WL. (2011). Stochastic amplification of calcium-activated potassium currents in Ca2+ microdomains. Journal of computational neuroscience. 31 [PubMed]

Stuart G, Spruston N, Sakmann B, Häusser M. (1997). Action potential initiation and backpropagation in neurons of the mammalian CNS. Trends in neurosciences. 20 [PubMed]

Yang CR, Seamans JK, Gorelova N. (1999). Developing a neuronal model for the pathophysiology of schizophrenia based on the nature of electrophysiological actions of dopamine in the prefrontal cortex. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology. 21 [PubMed]

Zhu JJ, Uhlrich DJ, Lytton WW. (1999). Burst firing in identified rat geniculate interneurons. Neuroscience. 91 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.