Rubchinsky LL, Kopell N, Sigvardt KA. (2003). Modeling facilitation and inhibition of competing motor programs in basal ganglia subthalamic nucleus-pallidal circuits. Proceedings of the National Academy of Sciences of the United States of America. 100 [PubMed]

See more from authors: Rubchinsky LL · Kopell N · Sigvardt KA

References and models cited by this paper

Albin RL, Young AB, Penney JB. (1989). The functional anatomy of basal ganglia disorders. Trends in neurosciences. 12 [PubMed]

Anderson ME, Horak FB. (1985). Influence of the globus pallidus on arm movements in monkeys. III. Timing of movement-related information. Journal of neurophysiology. 54 [PubMed]

Atar E, Dgani R, Shoham Z, Bornstein R. (1990). [Malignant ovarian tumors in pregnancy]. Harefuah. 119 [PubMed]

Bar-Gad I, Bergman H. (2001). Stepping out of the box: information processing in the neural networks of the basal ganglia. Current opinion in neurobiology. 11 [PubMed]

Benecke R, Rothwell JC, Dick JP, Day BL, Marsden CD. (1987). Disturbance of sequential movements in patients with Parkinson's disease. Brain : a journal of neurology. 110 ( Pt 2) [PubMed]

Bergman H et al. (1998). Physiological aspects of information processing in the basal ganglia of normal and parkinsonian primates. Trends in neurosciences. 21 [PubMed]

Berns GS, Sejnowski TJ. (1998). A computational model of how the basal ganglia produce sequences. Journal of cognitive neuroscience. 10 [PubMed]

Beurrier C, Bioulac B, Hammond C. (2000). Slowly inactivating sodium current (I(NaP)) underlies single-spike activity in rat subthalamic neurons. Journal of neurophysiology. 83 [PubMed]

Bevan MD, Wilson CJ. (1999). Mechanisms underlying spontaneous oscillation and rhythmic firing in rat subthalamic neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 19 [PubMed]

Bevan MD, Wilson CJ, Bolam JP, Magill PJ. (2000). Equilibrium potential of GABA(A) current and implications for rebound burst firing in rat subthalamic neurons in vitro. Journal of neurophysiology. 83 [PubMed]

Bolam JP, Hanley JJ, Booth PA, Bevan MD. (2000). Synaptic organisation of the basal ganglia. Journal of anatomy. 196 ( Pt 4) [PubMed]

Boraud T, Bezard E, Bioulac B, Gross CE. (2000). Ratio of inhibited-to-activated pallidal neurons decreases dramatically during passive limb movement in the MPTP-treated monkey. Journal of neurophysiology. 83 [PubMed]

Boraud T, Bezard E, Bioulac B, Gross CE. (2002). From single extracellular unit recording in experimental and human Parkinsonism to the development of a functional concept of the role played by the basal ganglia in motor control. Progress in neurobiology. 66 [PubMed]

Charara A, Heilman TC, Levey AI, Smith Y. (2000). Pre- and postsynaptic localization of GABA(B) receptors in the basal ganglia in monkeys. Neuroscience. 95 [PubMed]

Cooper AJ, Stanford IM. (2000). Electrophysiological and morphological characteristics of three subtypes of rat globus pallidus neurone in vitro. The Journal of physiology. 527 Pt 2 [PubMed]

DeLong MR. (1990). Primate models of movement disorders of basal ganglia origin. Trends in neurosciences. 13 [PubMed]

Deuschl G, Bergman H. (2002). Pathophysiology of nonparkinsonian tremors. Movement disorders : official journal of the Movement Disorder Society. 17 Suppl 3 [PubMed]

Filion M, Tremblay L, Bédard PJ. (1988). Abnormal influences of passive limb movement on the activity of globus pallidus neurons in parkinsonian monkeys. Brain research. 444 [PubMed]

Georgopoulos AP, DeLong MR, Crutcher MD. (1983). Relations between parameters of step-tracking movements and single cell discharge in the globus pallidus and subthalamic nucleus of the behaving monkey. The Journal of neuroscience : the official journal of the Society for Neuroscience. 3 [PubMed]

Gerfen CR. (1992). The neostriatal mosaic: multiple levels of compartmental organization in the basal ganglia. Annual review of neuroscience. 15 [PubMed]

Gillies AJ, Willshaw DJ. (1998). A massively connected subthalamic nucleus leads to the generation of widespread pulses. Proceedings. Biological sciences. 265 [PubMed]

Graybiel AM, Flaherty AW. (1994). Movement Disorders 3.

Gurney K, Prescott TJ, Redgrave P. (2001). A computational model of action selection in the basal ganglia. II. Analysis and simulation of behaviour. Biological cybernetics. 84 [PubMed]

Hikosaka O, Takikawa Y, Kawagoe R. (2000). Role of the basal ganglia in the control of purposive saccadic eye movements. Physiological reviews. 80 [PubMed]

Houk JC, Adams JL, Barto AGA. (1995). A model of how the basal ganglia generate and use neural signals that predict reinforcement. Models Of Information Processing In The Basal Ganglia.

Humphries MD, Gurney KN. (2001). A pulsed neural network model of bursting in the basal ganglia. Neural networks : the official journal of the International Neural Network Society. 14 [PubMed]

Kimura M, Matsumoto N. (1997). Adv Neurol. 74

Kita H, Kitai ST. (1991). Intracellular study of rat globus pallidus neurons: membrane properties and responses to neostriatal, subthalamic and nigral stimulation. Brain research. 564 [PubMed]

Levy R et al. (1997). Re-evaluation of the functional anatomy of the basal ganglia in normal and Parkinsonian states. Neuroscience. 76 [PubMed]

Magill PJ, Bolam JP, Bevan MD. (2001). Dopamine regulates the impact of the cerebral cortex on the subthalamic nucleus-globus pallidus network. Neuroscience. 106 [PubMed]

Miller R, Wickens JR. (2000). Brain Dynamics and Striatal Complex.

Mink JW. (1996). The basal ganglia: focused selection and inhibition of competing motor programs. Progress in neurobiology. 50 [PubMed]

Mink JW, Thach WT. (1991). Basal ganglia motor control. III. Pallidal ablation: normal reaction time, muscle cocontraction, and slow movement. Journal of neurophysiology. 65 [PubMed]

Mink JW, Thach WT. (1993). Basal ganglia intrinsic circuits and their role in behavior. Current opinion in neurobiology. 3 [PubMed]

Nambu A, Llinaś R. (1994). Electrophysiology of globus pallidus neurons in vitro. Journal of neurophysiology. 72 [PubMed]

Schultz W, Dayan P, Montague PR. (1997). A neural substrate of prediction and reward. Science (New York, N.Y.). 275 [PubMed]

Sejnowski TJ, Destexhe A, Mainen ZF. (1998). Kinetic models of synaptic transmission Methods In Neuronal Modeling.

Smith Y et al. (2001). Ionotropic and metabotropic GABA and glutamate receptors in primate basal ganglia. Journal of chemical neuroanatomy. 22 [PubMed]

Terman D, Rubin JE, Yew AC, Wilson CJ. (2002). Activity patterns in a model for the subthalamopallidal network of the basal ganglia. The Journal of neuroscience : the official journal of the Society for Neuroscience. 22 [PubMed]

Turner RS, Anderson ME. (1997). Pallidal discharge related to the kinematics of reaching movements in two dimensions. Journal of neurophysiology. 77 [PubMed]

Weiss P, Stelmach GE, Hefter H. (1997). Programming of a movement sequence in Parkinson's disease. Brain : a journal of neurology. 120 ( Pt 1) [PubMed]

Wenger KK, Musch KL, Mink JW. (1999). Impaired reaching and grasping after focal inactivation of globus pallidus pars interna in the monkey. Journal of neurophysiology. 82 [PubMed]

Wichmann T, DeLong MR. (1996). Functional and pathophysiological models of the basal ganglia. Current opinion in neurobiology. 6 [PubMed]

Wickens J. (1993). A theory of the striatum.

Wilson CJ. (1998). Synaptic Organization of the Brain.

References and models that cite this paper

Frank MJ. (2006). Hold your horses: a dynamic computational role for the subthalamic nucleus in decision making. Neural networks : the official journal of the International Neural Network Society. 19 [PubMed]

Hahn PJ, McIntyre CC. (2010). Modeling shifts in the rate and pattern of subthalamopallidal network activity during deep brain stimulation. Journal of computational neuroscience. 28 [PubMed]

Hendrickson EB, Edgerton JR, Jaeger D. (2011). The capabilities and limitations of conductance-based compartmental neuron models with reduced branched or unbranched morphologies and active dendrites. Journal of computational neuroscience. 30 [PubMed]

Humphries MD, Gurney K, Prescott TJ. (2007). Is there a brainstem substrate for action selection? Philosophical transactions of the Royal Society of London. Series B, Biological sciences. 362 [PubMed]

Humphries MD, Stewart RD, Gurney KN. (2006). A physiologically plausible model of action selection and oscillatory activity in the basal ganglia. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]

Kerr CC et al. (2013). Cortical information flow in Parkinson's disease: a composite network/field model. Frontiers in computational neuroscience. 7 [PubMed]

Leblois A, Boraud T, Meissner W, Bergman H, Hansel D. (2006). Competition between feedback loops underlies normal and pathological dynamics in the basal ganglia. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.