Redgrave P, Prescott TJ, Gurney K. (1999). The basal ganglia: a vertebrate solution to the selection problem? Neuroscience. 89 [PubMed]

See more from authors: Redgrave P · Prescott TJ · Gurney K

References and models cited by this paper
References and models that cite this paper

Bogacz R, Gurney K. (2007). The basal ganglia and cortex implement optimal decision making between alternative actions. Neural computation. 19 [PubMed]

Cisek P. (2006). Integrated neural processes for defining potential actions and deciding between them: a computational model. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]

Fountas Z, Shanahan M. (2017). The role of cortical oscillations in a spiking neural network model of the basal ganglia. PloS one. 12 [PubMed]

Frank MJ. (2006). Hold your horses: a dynamic computational role for the subthalamic nucleus in decision making. Neural networks : the official journal of the International Neural Network Society. 19 [PubMed]

Gillies A, Willshaw D. (2004). Models of the subthalamic nucleus. The importance of intranuclear connectivity. Medical engineering & physics. 26 [PubMed]

Girard B, Tabareau N, Pham QC, Berthoz A, Slotine JJ. (2008). Where neuroscience and dynamic system theory meet autonomous robotics: a contracting basal ganglia model for action selection. Neural networks : the official journal of the International Neural Network Society. 21 [PubMed]

Gurney K, Prescott TJ, Redgrave P. (2001). A computational model of action selection in the basal ganglia. II. Analysis and simulation of behaviour. Biological cybernetics. 84 [PubMed]

Gurney K, Prescott TJ, Redgrave P. (2001). A computational model of action selection in the basal ganglia. I. A new functional anatomy. Biological cybernetics. 84 [PubMed]

Gurney KN, Humphries MD, Redgrave P. (2015). A new framework for cortico-striatal plasticity: behavioural theory meets in vitro data at the reinforcement-action interface. PLoS biology. 13 [PubMed]

Guthrie M, Leblois A, Garenne A, Boraud T. (2013). Interaction between cognitive and motor cortico-basal ganglia loops during decision making: a computational study. Journal of neurophysiology. 109 [PubMed]

Humphries MD, Gurney K, Prescott TJ. (2007). Is there a brainstem substrate for action selection? Philosophical transactions of the Royal Society of London. Series B, Biological sciences. 362 [PubMed]

Humphries MD, Stewart RD, Gurney KN. (2006). A physiologically plausible model of action selection and oscillatory activity in the basal ganglia. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]

Humphries MD, Wood R, Gurney K. (2010). Reconstructing the three-dimensional GABAergic microcircuit of the striatum. PLoS computational biology. 6 [PubMed]

Lindroos R et al. (2018). Basal Ganglia Neuromodulation Over Multiple Temporal and Structural Scales-Simulations of Direct Pathway MSNs Investigate the Fast Onset of Dopaminergic Effects and Predict the Role of Kv4.2. Frontiers in neural circuits. 12 [PubMed]

Liénard J, Girard B. (2014). A biologically constrained model of the whole basal ganglia addressing the paradoxes of connections and selection. Journal of computational neuroscience. 36 [PubMed]

Pirini M, Rocchi L, Sensi M, Chiari L. (2009). A computational modelling approach to investigate different targets in deep brain stimulation for Parkinson's disease. Journal of computational neuroscience. 26 [PubMed]

Prescott TJ, Montes González FM, Gurney K, Humphries MD, Redgrave P. (2006). A robot model of the basal ganglia: behavior and intrinsic processing. Neural networks : the official journal of the International Neural Network Society. 19 [PubMed]

Salimi-Badr A, Ebadzadeh MM, Darlot C. (2017). A possible correlation between the basal ganglia motor function and the inverse kinematics calculation. Journal of computational neuroscience. 43 [PubMed]

Salimi-Badr A, Ebadzadeh MM, Darlot C. (2018). A system-level mathematical model of Basal Ganglia motor-circuit for kinematic planning of arm movements. Computers in biology and medicine. 92 [PubMed]

Shanahan M. (2008). A spiking neuron model of cortical broadcast and competition. Consciousness and cognition. 17 [PubMed]

Zhang YH, Ji Y, Zheng WM. (2016). Modelling Spiking Neural Network from the Architecture Evaluation Perspective Journal of Computer Science and Technology. 31

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.