Bergman H, Wichmann T, DeLong MR. (1990). Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science (New York, N.Y.). 249 [PubMed]

See more from authors: Bergman H · Wichmann T · DeLong MR

References and models cited by this paper
References and models that cite this paper

Bellinger SC, Miyazawa G, Steinmetz PN. (2008). Submyelin potassium accumulation may functionally block subsets of local axons during deep brain stimulation: a modeling study. Journal of neural engineering. 5 [PubMed]

Contreras-Vidal JL, Stelmach GE. (1995). A neural model of basal ganglia-thalamocortical relations in normal and parkinsonian movement. Biological cybernetics. 73 [PubMed]

Damodaran S, Cressman JR, Jedrzejewski-Szmek Z, Blackwell KT. (2015). Desynchronization of fast-spiking interneurons reduces ß-band oscillations and imbalance in firing in the dopamine-depleted striatum. The Journal of neuroscience : the official journal of the Society for Neuroscience. 35 [PubMed]

Frank MJ. (2006). Hold your horses: a dynamic computational role for the subthalamic nucleus in decision making. Neural networks : the official journal of the International Neural Network Society. 19 [PubMed]

Frank MJ, Samanta J, Moustafa AA, Sherman SJ. (2007). Hold your horses: impulsivity, deep brain stimulation, and medication in parkinsonism. Science (New York, N.Y.). 318 [PubMed]

Gillies A, Willshaw D. (2004). Models of the subthalamic nucleus. The importance of intranuclear connectivity. Medical engineering & physics. 26 [PubMed]

Gillies A, Willshaw D. (2006). Membrane channel interactions underlying rat subthalamic projection neuron rhythmic and bursting activity. Journal of neurophysiology. 95 [PubMed]

Leblois A, Boraud T, Meissner W, Bergman H, Hansel D. (2006). Competition between feedback loops underlies normal and pathological dynamics in the basal ganglia. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]

Mercer JN, Chan CS, Tkatch T, Held J, Surmeier DJ. (2007). Nav1.6 sodium channels are critical to pacemaking and fast spiking in globus pallidus neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 27 [PubMed]

So RQ, Kent AR, Grill WM. (2012). Relative contributions of local cell and passing fiber activation and silencing to changes in thalamic fidelity during deep brain stimulation and lesioning: a computational modeling study. Journal of computational neuroscience. 32 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.