Fröhlich F, McCormick DA. (2010). Endogenous electric fields may guide neocortical network activity. Neuron. 67 [PubMed]

See more from authors: Fröhlich F · McCormick DA

References and models cited by this paper
References and models that cite this paper

Berzhanskaya J, Chernyy N, Gluckman BJ, Schiff SJ, Ascoli GA. (2013). Modulation of hippocampal rhythms by subthreshold electric fields and network topology. Journal of computational neuroscience. 34 [PubMed]

Cakan C, Obermayer K. (2020). PLoS computational biology. 16 [PubMed]

Chiang CC, Shivacharan RS, Wei X, Gonzalez-Reyes LE, Durand DM. (2019). Slow periodic activity in the longitudinal hippocampal slice can self-propagate non-synaptically by a mechanism consistent with ephaptic coupling. The Journal of physiology. 597 [PubMed]

Goldwyn JH, Rinzel J. (2016). Neuronal coupling by endogenous electric fields: cable theory and applications to coincidence detector neurons in the auditory brain stem. Journal of neurophysiology. 115 [PubMed]

Halnes G et al. (2016). Effect of Ionic Diffusion on Extracellular Potentials in Neural Tissue. PLoS computational biology. 12 [PubMed]

Li G, Henriquez CS, Fröhlich F. (2017). Unified Thalamic Model Generates Multiple Distinct Oscillations with State-dependent Entrainment by Stimulation PLOS Computational Biology. 13(10)

Tomsett RJ et al. (2015). Virtual Electrode Recording Tool for EXtracellular potentials (VERTEX): comparing multi-electrode recordings from simulated and biological mammalian cortical tissue. Brain structure & function. 220 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.