Dean P, Porrill J, Stone JV. (2002). Decorrelation control by the cerebellum achieves oculomotor plant compensation in simulated vestibulo-ocular reflex. Proceedings. Biological sciences. 269 [PubMed]

See more from authors: Dean P · Porrill J · Stone JV

References and models cited by this paper
References and models that cite this paper

Clopath C, Badura A, De Zeeuw CI, Brunel N. (2014). A cerebellar learning model of vestibulo-ocular reflex adaptation in wild-type and mutant mice. The Journal of neuroscience : the official journal of the Society for Neuroscience. 34 [PubMed]

Luque NR, Naveros F, Carrillo RR, Ros E, Arleo A. (2019). Spike burst-pause dynamics of Purkinje cells regulate sensorimotor adaptation. PLoS computational biology. 15 [PubMed]

Porrill J, Dean P. (2007). Recurrent cerebellar loops simplify adaptive control of redundant and nonlinear motor systems. Neural computation. 19 [PubMed]

Rössert C, Dean P, Porrill J. (2015). At the Edge of Chaos: How Cerebellar Granular Layer Network Dynamics Can Provide the Basis for Temporal Filters. PLoS computational biology. 11 [PubMed]

Stone JV, Jupp PE. (2007). Free-lunch learning: modeling spontaneous recovery of memory. Neural computation. 19 [PubMed]

Wilson CJ, Beverlin B, Netoff T. (2011). Chaotic desynchronization as the therapeutic mechanism of deep brain stimulation. Frontiers in systems neuroscience. 5 [PubMed]

Yamazaki T, Nagao S. (2012). A computational mechanism for unified gain and timing control in the cerebellum. PloS one. 7 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.