Cantrell AR, Catterall WA. (2001). Neuromodulation of Na+ channels: an unexpected form of cellular plasticity. Nature reviews. Neuroscience. 2 [PubMed]

See more from authors: Cantrell AR · Catterall WA

References and models cited by this paper
References and models that cite this paper

Buckingham SD, Ali DW. (2005). Computer simulations of high-pass filtering in zebrafish larval muscle fibres. The Journal of experimental biology. 208 [PubMed]

Chen Y, Yu FH, Surmeier DJ, Scheuer T, Catterall WA. (2006). Neuromodulation of Na+ channel slow inactivation via cAMP-dependent protein kinase and protein kinase C. Neuron. 49 [PubMed]

Csercsik D, Farkas I, Hrabovszky E, Liposits Z. (2012). A simple integrative electrophysiological model of bursting GnRH neurons. Journal of computational neuroscience. 32 [PubMed]

Dai Y, Jones KE, Fedirchuk B, McCrea DA, Jordan LM. (2002). A modelling study of locomotion-induced hyperpolarization of voltage threshold in cat lumbar motoneurones. The Journal of physiology. 544 [PubMed]

Das A, Narayanan R. (2015). Active dendrites mediate stratified gamma-range coincidence detection in hippocampal model neurons. The Journal of physiology. 593 [PubMed]

Edgerton JR, Hanson JE, Günay C, Jaeger D. (2010). Dendritic sodium channels regulate network integration in globus pallidus neurons: a modeling study. The Journal of neuroscience : the official journal of the Society for Neuroscience. 30 [PubMed]

Edgerton JR, Jaeger D. (2011). Dendritic sodium channels promote active decorrelation and reduce phase locking to parkinsonian input oscillations in model globus pallidus neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 31 [PubMed]

Fleidervish IA, Libman L, Katz E, Gutnick MJ. (2008). Endogenous polyamines regulate cortical neuronal excitability by blocking voltage-gated Na+ channels. Proceedings of the National Academy of Sciences of the United States of America. 105 [PubMed]

Hanson JE, Smith Y, Jaeger D. (2004). Sodium channels and dendritic spike initiation at excitatory synapses in globus pallidus neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 24 [PubMed]

Hossain WA, Antic SD, Yang Y, Rasband MN, Morest DK. (2005). Where is the spike generator of the cochlear nerve? Voltage-gated sodium channels in the mouse cochlea. The Journal of neuroscience : the official journal of the Society for Neuroscience. 25 [PubMed]

Maurice N et al. (2004). D2 dopamine receptor-mediated modulation of voltage-dependent Na+ channels reduces autonomous activity in striatal cholinergic interneurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 24 [PubMed]

Narayanan R, Johnston D. (2007). Long-term potentiation in rat hippocampal neurons is accompanied by spatially widespread changes in intrinsic oscillatory dynamics and excitability. Neuron. 56 [PubMed]

Narayanan R, Johnston D. (2008). The h channel mediates location dependence and plasticity of intrinsic phase response in rat hippocampal neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 28 [PubMed]

Reetz O, Stadler K, Strauss U. (2014). Protein kinase C activation mediates interferon-ß-induced neuronal excitability changes in neocortical pyramidal neurons. Journal of neuroinflammation. 11 [PubMed]

Rho YA, Prescott SA. (2012). Identification of molecular pathologies sufficient to cause neuropathic excitability in primary somatosensory afferents using dynamical systems theory. PLoS computational biology. 8 [PubMed]

Saghatelyan A et al. (2005). Activity-dependent adjustments of the inhibitory network in the olfactory bulb following early postnatal deprivation. Neuron. 46 [PubMed]

Zhou Y, Carney LH, Colburn HS. (2005). A model for interaural time difference sensitivity in the medial superior olive: interaction of excitatory and inhibitory synaptic inputs, channel dynamics, and cellular morphology. The Journal of neuroscience : the official journal of the Society for Neuroscience. 25 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.