Häusser M, Monsivais P. (2003). Less means more: inhibition of spontaneous firing triggers persistent increases in excitability. Neuron. 40 [PubMed]

See more from authors: Häusser M · Monsivais P

References and models cited by this paper

Aizenman CD, Linden DJ. (2000). Rapid, synaptically driven increases in the intrinsic excitability of cerebellar deep nuclear neurons. Nature neuroscience. 3 [PubMed]

Attwell D, Laughlin SB. (2001). An energy budget for signaling in the grey matter of the brain. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism. 21 [PubMed]

Avanzini G, de Curtis M, Panzica F, Spreafico R. (1989). Intrinsic properties of nucleus reticularis thalami neurones of the rat studied in vitro. The Journal of physiology. 416 [PubMed]

Chance FS, Abbott LF, Reyes AD. (2002). Gain modulation from background synaptic input. Neuron. 35 [PubMed]

Desai NS, Rutherford LC, Turrigiano GG. (1999). Plasticity in the intrinsic excitability of cortical pyramidal neurons. Nature neuroscience. 2 [PubMed]

Feigenspan A, Gustincich S, Bean BP, Raviola E. (1998). Spontaneous activity of solitary dopaminergic cells of the retina. The Journal of neuroscience : the official journal of the Society for Neuroscience. 18 [PubMed]

Häusser M, Clark BA. (1997). Tonic synaptic inhibition modulates neuronal output pattern and spatiotemporal synaptic integration. Neuron. 19 [PubMed]

Llinás RR. (1988). The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. Science (New York, N.Y.). 242 [PubMed]

Marder E, Prinz AA. (2002). Modeling stability in neuron and network function: the role of activity in homeostasis. BioEssays : news and reviews in molecular, cellular and developmental biology. 24 [PubMed]

McCormick DA, Pape HC. (1990). Properties of a hyperpolarization-activated cation current and its role in rhythmic oscillation in thalamic relay neurones. The Journal of physiology. 431 [PubMed]

Nelson AB, Krispel CM, Sekirnjak C, du Lac S. (2003). Long-lasting increases in intrinsic excitability triggered by inhibition. Neuron. 40 [PubMed]

Pennartz CM, de Jeu MT, Bos NP, Schaap J, Geurtsen AM. (2002). Diurnal modulation of pacemaker potentials and calcium current in the mammalian circadian clock. Nature. 416 [PubMed]

Raman IM, Bean BP. (1997). Resurgent sodium current and action potential formation in dissociated cerebellar Purkinje neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 17 [PubMed]

Raman IM, Gustafson AE, Padgett D. (2000). Ionic currents and spontaneous firing in neurons isolated from the cerebellar nuclei. The Journal of neuroscience : the official journal of the Society for Neuroscience. 20 [PubMed]

Smith MR, Nelson AB, Du Lac S. (2002). Regulation of firing response gain by calcium-dependent mechanisms in vestibular nucleus neurons. Journal of neurophysiology. 87 [PubMed]

Smith SL, Otis TS. (2003). Persistent changes in spontaneous firing of Purkinje neurons triggered by the nitric oxide signaling cascade. The Journal of neuroscience : the official journal of the Society for Neuroscience. 23 [PubMed]

Taddese A, Bean BP. (2002). Subthreshold sodium current from rapidly inactivating sodium channels drives spontaneous firing of tuberomammillary neurons. Neuron. 33 [PubMed]

du Lac S, Raymond JL, Sejnowski TJ, Lisberger SG. (1995). Learning and memory in the vestibulo-ocular reflex. Annual review of neuroscience. 18 [PubMed]

References and models that cite this paper
This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.