Nedergaard S, Flatman JA, Engberg I. (1993). Nifedipine- and omega-conotoxin-sensitive Ca2+ conductances in guinea-pig substantia nigra pars compacta neurones. The Journal of physiology. 466 [PubMed]

See more from authors: Nedergaard S · Flatman JA · Engberg I

References and models cited by this paper
References and models that cite this paper

Canavier CC. (1999). Sodium dynamics underlying burst firing and putative mechanisms for the regulation of the firing pattern in midbrain dopamine neurons: a computational approach. Journal of computational neuroscience. 6 [PubMed]

Canavier CC, Oprisan SA, Callaway JC, Ji H, Shepard PD. (2007). Computational model predicts a role for ERG current in repolarizing plateau potentials in dopamine neurons: implications for modulation of neuronal activity. Journal of neurophysiology. 98 [PubMed]

Chan CS et al. (2007). 'Rejuvenation' protects neurons in mouse models of Parkinson's disease. Nature. 447 [PubMed]

Dougalis AG, Matthews GAC, Liss B, Ungless MA. (2017). Ionic currents influencing spontaneous firing and pacemaker frequency in dopamine neurons of the ventrolateral periaqueductal gray and dorsal raphe nucleus (vlPAG/DRN): A voltage-clamp and computational modelling study. Journal of computational neuroscience. 42 [PubMed]

Komendantov AO, Komendantova OG, Johnson SW, Canavier CC. (2004). A modeling study suggests complementary roles for GABAA and NMDA receptors and the SK channel in regulating the firing pattern in midbrain dopamine neurons. Journal of neurophysiology. 91 [PubMed]

Kuznetsov AS, Kopell NJ, Wilson CJ. (2006). Transient high-frequency firing in a coupled-oscillator model of the mesencephalic dopaminergic neuron. Journal of neurophysiology. 95 [PubMed]

Kuznetsova AY, Huertas MA, Kuznetsov AS, Paladini CA, Canavier CC. (2010). Regulation of firing frequency in a computational model of a midbrain dopaminergic neuron. Journal of computational neuroscience. 28 [PubMed]

Stanley DA, Bardakjian BL, Spano ML, Ditto WL. (2011). Stochastic amplification of calcium-activated potassium currents in Ca2+ microdomains. Journal of computational neuroscience. 31 [PubMed]

Yu N, Canavier CC. (2015). A Mathematical Model of a Midbrain Dopamine Neuron Identifies Two Slow Variables Likely Responsible for Bursts Evoked by SK Channel Antagonists and Terminated by Depolarization Block. Journal of mathematical neuroscience. 5 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.