Hanson JE, Smith Y, Jaeger D. (2004). Sodium channels and dendritic spike initiation at excitatory synapses in globus pallidus neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 24 [PubMed]

See more from authors: Hanson JE · Smith Y · Jaeger D

References and models cited by this paper

Beckh S, Noda M, Lübbert H, Numa S. (1989). Differential regulation of three sodium channel messenger RNAs in the rat central nervous system during development. The EMBO journal. 8 [PubMed]

Bevan MD, Magill PJ, Terman D, Bolam JP, Wilson CJ. (2002). Move to the rhythm: oscillations in the subthalamic nucleus-external globus pallidus network. Trends in neurosciences. 25 [PubMed]

Boiko T et al. (2001). Compact myelin dictates the differential targeting of two sodium channel isoforms in the same axon. Neuron. 30 [PubMed]

Caldwell JH, Schaller KL, Lasher RS, Peles E, Levinson SR. (2000). Sodium channel Na(v)1.6 is localized at nodes of ranvier, dendrites, and synapses. Proceedings of the National Academy of Sciences of the United States of America. 97 [PubMed]

Cantrell AR, Catterall WA. (2001). Neuromodulation of Na+ channels: an unexpected form of cellular plasticity. Nature reviews. Neuroscience. 2 [PubMed]

Chen WR, Midtgaard J, Shepherd GM. (1997). Forward and backward propagation of dendritic impulses and their synaptic control in mitral cells. Science (New York, N.Y.). 278 [PubMed]

Cooper AJ, Stanford IM. (2000). Electrophysiological and morphological characteristics of three subtypes of rat globus pallidus neurone in vitro. The Journal of physiology. 527 Pt 2 [PubMed]

DeLong MR. (1971). Activity of pallidal neurons during movement. Journal of neurophysiology. 34 [PubMed]

Falls WM, Park MR, Kitai ST. (1983). An intracellular HRP study of the rat globus pallidus. II. Fine structural characteristics and synaptic connections of medially located large GP neurons. The Journal of comparative neurology. 221 [PubMed]

Gauck V, Jaeger D. (2000). The control of rate and timing of spikes in the deep cerebellar nuclei by inhibition. The Journal of neuroscience : the official journal of the Society for Neuroscience. 20 [PubMed]

Goldin AL. (1999). Diversity of mammalian voltage-gated sodium channels. Annals of the New York Academy of Sciences. 868 [PubMed]

Goldin AL. (2001). Resurgence of sodium channel research. Annual review of physiology. 63 [PubMed]

Golding NL, Kath WL, Spruston N. (2001). Dichotomy of action-potential backpropagation in CA1 pyramidal neuron dendrites. Journal of neurophysiology. 86 [PubMed]

Golding NL, Spruston N. (1998). Dendritic sodium spikes are variable triggers of axonal action potentials in hippocampal CA1 pyramidal neurons. Neuron. 21 [PubMed]

Hanson JE, Jaeger D. (2002). Short-term plasticity shapes the response to simulated normal and parkinsonian input patterns in the globus pallidus. The Journal of neuroscience : the official journal of the Society for Neuroscience. 22 [PubMed]

Hanson JE, Smith Y. (2002). Subcellular distribution of high-voltage-activated calcium channel subtypes in rat globus pallidus neurons. The Journal of comparative neurology. 442 [PubMed]

Häusser M, Spruston N, Stuart GJ. (2000). Diversity and dynamics of dendritic signaling. Science (New York, N.Y.). 290 [PubMed]

Häusser M, Stuart G, Racca C, Sakmann B. (1995). Axonal initiation and active dendritic propagation of action potentials in substantia nigra neurons. Neuron. 15 [PubMed]

Jaeger D, Bower JM. (1999). Synaptic control of spiking in cerebellar Purkinje cells: dynamic current clamp based on model conductances. The Journal of neuroscience : the official journal of the Society for Neuroscience. 19 [PubMed]

Jaeger D, Gilman S, Aldridge JW. (1993). Primate basal ganglia activity in a precued reaching task: preparation for movement. Experimental brain research. 95 [PubMed]

Kita H. (1994). Physiology of two disynaptic pathways from the sensorimotor cortex to the basal ganglia output nuclei The basal ganglia IV.

Kita H, Kitai ST. (1987). Efferent projections of the subthalamic nucleus in the rat: light and electron microscopic analysis with the PHA-L method. The Journal of comparative neurology. 260 [PubMed]

Kita H, Kitai ST. (1994). The morphology of globus pallidus projection neurons in the rat: an intracellular staining study. Brain research. 636 [PubMed]

Magee JC. (1998). Dendritic hyperpolarization-activated currents modify the integrative properties of hippocampal CA1 pyramidal neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 18 [PubMed]

Magee JC, Johnston D. (1997). A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons. Science (New York, N.Y.). 275 [PubMed]

Magill PJ, Bolam JP, Bevan MD. (2000). Relationship of activity in the subthalamic nucleus-globus pallidus network to cortical electroencephalogram. The Journal of neuroscience : the official journal of the Society for Neuroscience. 20 [PubMed]

Magill PJ, Bolam JP, Bevan MD. (2001). Dopamine regulates the impact of the cerebral cortex on the subthalamic nucleus-globus pallidus network. Neuroscience. 106 [PubMed]

Martina M, Vida I, Jonas P. (2000). Distal initiation and active propagation of action potentials in interneuron dendrites. Science (New York, N.Y.). 287 [PubMed]

Maurice N, Tkatch T, Meisler M, Sprunger LK, Surmeier DJ. (2001). D1/D5 dopamine receptor activation differentially modulates rapidly inactivating and persistent sodium currents in prefrontal cortex pyramidal neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 21 [PubMed]

Nambu A, Llinás R. (1997). Morphology of globus pallidus neurons: its correlation with electrophysiology in guinea pig brain slices. The Journal of comparative neurology. 377 [PubMed]

Nambu A et al. (2000). Excitatory cortical inputs to pallidal neurons via the subthalamic nucleus in the monkey. Journal of neurophysiology. 84 [PubMed]

Park MR, Falls WM, Kitai ST. (1982). An intracellular HRP study of the rat globus pallidus. I. Responses and light microscopic analysis. The Journal of comparative neurology. 211 [PubMed]

Plenz D, Kital ST. (1999). A basal ganglia pacemaker formed by the subthalamic nucleus and external globus pallidus. Nature. 400 [PubMed]

Rall W. (1995). The Theoretical Foundation Of Dendritic Function.

Raman IM, Sprunger LK, Meisler MH, Bean BP. (1997). Altered subthreshold sodium currents and disrupted firing patterns in Purkinje neurons of Scn8a mutant mice. Neuron. 19 [PubMed]

Schwindt PC, Crill WE. (1998). Synaptically evoked dendritic action potentials in rat neocortical pyramidal neurons. Journal of neurophysiology. 79 [PubMed]

Segev I, London M. (2000). Untangling dendrites with quantitative models. Science (New York, N.Y.). 290 [PubMed]

Shink E, Smith Y. (1995). Differential synaptic innervation of neurons in the internal and external segments of the globus pallidus by the GABA- and glutamate-containing terminals in the squirrel monkey. The Journal of comparative neurology. 358 [PubMed]

Smith Y, Bevan MD, Shink E, Bolam JP. (1998). Microcircuitry of the direct and indirect pathways of the basal ganglia. Neuroscience. 86 [PubMed]

Spruston N, Jaffe DB, Williams SH, Johnston D. (1993). Voltage- and space-clamp errors associated with the measurement of electrotonically remote synaptic events. Journal of neurophysiology. 70 [PubMed]

Spruston N, Schiller Y, Stuart G, Sakmann B. (1995). Activity-dependent action potential invasion and calcium influx into hippocampal CA1 dendrites. Science (New York, N.Y.). 268 [PubMed]

Stuart G, Spruston N, Sakmann B, Häusser M. (1997). Action potential initiation and backpropagation in neurons of the mammalian CNS. Trends in neurosciences. 20 [PubMed]

Stuart GJ, Sakmann B. (1994). Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature. 367 [PubMed]

Terman D, Rubin JE, Yew AC, Wilson CJ. (2002). Activity patterns in a model for the subthalamopallidal network of the basal ganglia. The Journal of neuroscience : the official journal of the Society for Neuroscience. 22 [PubMed]

Thurbon D, Lüscher HR, Hofstetter T, Redman SJ. (1998). Passive electrical properties of ventral horn neurons in rat spinal cord slices. Journal of neurophysiology. 79 [PubMed]

Traub RD, Wong RK, Miles R, Michelson H. (1991). A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances. Journal of neurophysiology. 66 [PubMed]

Tsubokawa H, Ross WN. (1996). IPSPs modulate spike backpropagation and associated [Ca2+]i changes in the dendrites of hippocampal CA1 pyramidal neurons. Journal of neurophysiology. 76 [PubMed]

Urbain N et al. (2000). Unrelated course of subthalamic nucleus and globus pallidus neuronal activities across vigilance states in the rat. The European journal of neuroscience. 12 [PubMed]

Vetter P, Roth A, Häusser M. (2001). Propagation of action potentials in dendrites depends on dendritic morphology. Journal of neurophysiology. 85 [PubMed]

Westenbroek RE, Merrick DK, Catterall WA. (1989). Differential subcellular localization of the RI and RII Na+ channel subtypes in central neurons. Neuron. 3 [PubMed]

Williams SR, Stuart GJ. (2002). Dependence of EPSP efficacy on synapse location in neocortical pyramidal neurons. Science (New York, N.Y.). 295 [PubMed]

Xiong W, Chen WR. (2002). Dynamic gating of spike propagation in the mitral cell lateral dendrites. Neuron. 34 [PubMed]

References and models that cite this paper

Chan CS, Shigemoto R, Mercer JN, Surmeier DJ. (2004). HCN2 and HCN1 channels govern the regularity of autonomous pacemaking and synaptic resetting in globus pallidus neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 24 [PubMed]

Edgerton JR, Hanson JE, Günay C, Jaeger D. (2010). Dendritic sodium channels regulate network integration in globus pallidus neurons: a modeling study. The Journal of neuroscience : the official journal of the Society for Neuroscience. 30 [PubMed]

Edgerton JR, Jaeger D. (2011). Dendritic sodium channels promote active decorrelation and reduce phase locking to parkinsonian input oscillations in model globus pallidus neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 31 [PubMed]

Gleeson P, Steuber V, Silver RA. (2007). neuroConstruct: a tool for modeling networks of neurons in 3D space. Neuron. 54 [PubMed]

Günay C, Edgerton JR, Jaeger D. (2008). Channel density distributions explain spiking variability in the globus pallidus: a combined physiology and computer simulation database approach. The Journal of neuroscience : the official journal of the Society for Neuroscience. 28 [PubMed]

Hendrickson EB, Edgerton JR, Jaeger D. (2011). The capabilities and limitations of conductance-based compartmental neuron models with reduced branched or unbranched morphologies and active dendrites. Journal of computational neuroscience. 30 [PubMed]

Hendrickson EB, Edgerton JR, Jaeger D. (2011). The use of automated parameter searches to improve ion channel kinetics for neural modeling. Journal of computational neuroscience. 31 [PubMed]

Humphries MD, Stewart RD, Gurney KN. (2006). A physiologically plausible model of action selection and oscillatory activity in the basal ganglia. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]

Johnson MD, McIntyre CC. (2008). Quantifying the neural elements activated and inhibited by globus pallidus deep brain stimulation. Journal of neurophysiology. 100 [PubMed]

Lin RJ, Jaeger D. (2011). Using computer simulations to determine the limitations of dynamic clamp stimuli applied at the soma in mimicking distributed conductance sources. Journal of neurophysiology. 105 [PubMed]

Schultheiss NW, Edgerton JR, Jaeger D. (2010). Phase response curve analysis of a full morphological globus pallidus neuron model reveals distinct perisomatic and dendritic modes of synaptic integration. The Journal of neuroscience : the official journal of the Society for Neuroscience. 30 [PubMed]

Shapiro NP, Lee RH. (2007). Synaptic amplification versus bistability in motoneuron dendritic processing: a top-down modeling approach. Journal of neurophysiology. 97 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.