Brette R, Gerstner W. (2005). Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. Journal of neurophysiology. 94 [PubMed]

See more from authors: Brette R · Gerstner W

References and models cited by this paper

Bower JM, Beeman D. (1998). The Book Of Genesis: Exploring Realistic Neural Models With The General Neural Simulation System.

Brette R, Guigon E. (2003). Reliability of spike timing is a general property of spiking model neurons. Neural computation. 15 [PubMed]

Destexhe A, Contreras D, Steriade M. (1998). Mechanisms underlying the synchronizing action of corticothalamic feedback through inhibition of thalamic relay cells. Journal of neurophysiology. 79 [PubMed]

Destexhe A, Rudolph M, Fellous JM, Sejnowski TJ. (2001). Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience. 107 [PubMed]

Destexhe A, Rudolph M, Paré D. (2003). The high-conductance state of neocortical neurons in vivo. Nature reviews. Neuroscience. 4 [PubMed]

Ermentrout B. (1996). Type I membranes, phase resetting curves, and synchrony. Neural computation. 8 [PubMed]

Fourcaud-Trocmé N, Hansel D, van Vreeswijk C, Brunel N. (2003). How spike generation mechanisms determine the neuronal response to fluctuating inputs. The Journal of neuroscience : the official journal of the Society for Neuroscience. 23 [PubMed]

Goldman MS, Golowasch J, Marder E, Abbott LF. (2001). Global structure, robustness, and modulation of neuronal models. The Journal of neuroscience : the official journal of the Society for Neuroscience. 21 [PubMed]

HODGKIN AL, HUXLEY AF. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of physiology. 117 [PubMed]

Hille B. (2001). Classic mechanisms of block Ion Channels of Excitable Membranes (3rd edn).

Hines ML, Carnevale NT. (1997). The NEURON simulation environment. Neural computation. 9 [PubMed]

Izhikevich EM. (2003). Simple model of spiking neurons. IEEE transactions on neural networks. 14 [PubMed]

Jolivet R, Lewis TJ, Gerstner W. (2004). Generalized integrate-and-fire models of neuronal activity approximate spike trains of a detailed model to a high degree of accuracy. Journal of neurophysiology. 92 [PubMed]

Keat J, Reinagel P, Reid RC, Meister M. (2001). Predicting every spike: a model for the responses of visual neurons. Neuron. 30 [PubMed]

Kistler WM, van Hemmen JL, Gerstner W. (1997). Reduction of Hodgkin-Huxley equations to a single-variable threshold model. Neural Comput. 9

Lapicque L. (1907). Recherches quantitatives sur lexcitation electrique des nerfs traitee comme une polarisation J Physiol Pathol Gen. 9

Latham PE, Richmond BJ, Nelson PG, Nirenberg S. (2000). Intrinsic dynamics in neuronal networks. I. Theory. Journal of neurophysiology. 83 [PubMed]

Mainen ZF, Sejnowski TJ. (1995). Reliability of spike timing in neocortical neurons. Science (New York, N.Y.). 268 [PubMed]

McCormick DA, Wang Z, Huguenard J. (1993). Neurotransmitter control of neocortical neuronal activity and excitability. Cerebral cortex (New York, N.Y. : 1991). 3 [PubMed]

Paninski L, Pillow JW, Simoncelli EP. (2004). Maximum likelihood estimation of a stochastic integrate-and-fire neural encoding model. Neural computation. 16 [PubMed]

Paré D, Shink E, Gaudreau H, Destexhe A, Lang EJ. (1998). Impact of spontaneous synaptic activity on the resting properties of cat neocortical pyramidal neurons In vivo. Journal of neurophysiology. 79 [PubMed]

Prinz AA, Billimoria CP, Marder E. (2003). Alternative to hand-tuning conductance-based models: construction and analysis of databases of model neurons. Journal of neurophysiology. 90 [PubMed]

Richardson MJ, Brunel N, Hakim V. (2003). From subthreshold to firing-rate resonance. Journal of neurophysiology. 89 [PubMed]

Roth A, Häusser M. (2001). Compartmental models of rat cerebellar Purkinje cells based on simultaneous somatic and dendritic patch-clamp recordings. The Journal of physiology. 535 [PubMed]

Segev I, Burke RE, Fleshman JW. (1989). Compartmental models of complex neurons Methods In Neuronal Modelling: From Synapses To Networks.

Sharp AA, O'Neil MB, Abbott LF, Marder E. (1993). The dynamic clamp: artificial conductances in biological neurons. Trends in neurosciences. 16 [PubMed]

Stein RB. (1967). Some models of neuronal variability. Biophysical journal. 7 [PubMed]

Steriade M. (2004). Neocortical cell classes are flexible entities. Nature reviews. Neuroscience. 5 [PubMed]

Tuckwell HC. (1988). Introduction To Theoretical Neurobiology: Vol 1, Linear Cable Theory And Dendritic Structure. 1

References and models that cite this paper

Ai H, Kai K, Kumaraswamy A, Ikeno H, Wachtler T. (2017). Interneurons in the Honeybee Primary Auditory Center Responding to Waggle Dance-Like Vibration Pulses. The Journal of neuroscience : the official journal of the Society for Neuroscience. 37 [PubMed]

Arsiero M, Lüscher HR, Lundstrom BN, Giugliano M. (2007). The impact of input fluctuations on the frequency-current relationships of layer 5 pyramidal neurons in the rat medial prefrontal cortex. The Journal of neuroscience : the official journal of the Society for Neuroscience. 27 [PubMed]

Aubie B, Becker S, Faure PA. (2009). Computational models of millisecond level duration tuning in neural circuits. The Journal of neuroscience : the official journal of the Society for Neuroscience. 29 [PubMed]

Badel L et al. (2008). Dynamic I-V curves are reliable predictors of naturalistic pyramidal-neuron voltage traces. Journal of neurophysiology. 99 [PubMed]

Bernard C, Jirsa VK, Woodman MM, Melozzi F. (2017). The Virtual Mouse Brain: A Computational Neuroinformatics Platform to Study Whole Mouse Brain Dynamics eNeuro.

Brette R. (2013). Sharpness of spike initiation in neurons explained by compartmentalization. PLoS computational biology. 9 [PubMed]

Brette R et al. (2007). Simulation of networks of spiking neurons: a review of tools and strategies. Journal of computational neuroscience. 23 [PubMed]

Buchin A, Rieubland S, Häusser M, Gutkin BS, Roth A. (2016). Inverse Stochastic Resonance in Cerebellar Purkinje Cells. PLoS computational biology. 12 [PubMed]

Cakan C, Obermayer K. (2020). PLoS computational biology. 16 [PubMed]

Carnevale NT, Morse TM. (1996). Research reports that have used NEURON Web published citations at the NEURON website.

Chavlis S, Petrantonakis PC, Poirazi P. (2017). Dendrites of dentate gyrus granule cells contribute to pattern separation by controlling sparsity. Hippocampus. 27 [PubMed]

Clopath C, Büsing L, Vasilaki E, Gerstner W. (2010). Connectivity reflects coding: a model of voltage-based STDP with homeostasis. Nature neuroscience. 13 [PubMed]

Clopath C, Ziegler L, Vasilaki E, Büsing L, Gerstner W. (2008). Tag-trigger-consolidation: a model of early and late long-term-potentiation and depression. PLoS computational biology. 4 [PubMed]

Cohen MX. (2014). Fluctuations in oscillation frequency control spike timing and coordinate neural networks. The Journal of neuroscience : the official journal of the Society for Neuroscience. 34 [PubMed]

Costa RP, Froemke RC, Sjöström PJ, van Rossum MC. (2015). Unified pre- and postsynaptic long-term plasticity enables reliable and flexible learning. eLife. 4 [PubMed]

Danielson NB et al. (2017). In Vivo Imaging of Dentate Gyrus Mossy Cells in Behaving Mice. Neuron. 93 [PubMed]

Destexhe A. (2009). Self-sustained asynchronous irregular states and Up-Down states in thalamic, cortical and thalamocortical networks of nonlinear integrate-and-fire neurons. Journal of computational neuroscience. 27 [PubMed]

Diwakar S, Parasuram H, Nair B, Medini C, Nair M. (2017). Computational Neuroscience of Timing, Plasticity and Function in Cerebellum Microcircuits (Chapter 12) Computational Neurology and Psychiatry, Springer Series in Bio-/Neuroinformatics.

Dragly SA et al. (2017). Neuronify: An Educational Simulator for Neural Circuits. eNeuro. 4 [PubMed]

Ermentrout GB, Terman DH. (2010). Mathematical Foundations of Neuroscience Interdisciplinary Applied Mathematics. 35

Fardet T, Levina A. (2020). Simple Models Including Energy and Spike Constraints Reproduce Complex Activity Patterns and Metabolic Disruptions PLoS computational biology. 16 [PubMed]

Ferguson KA, Njap F, Nicola W, Skinner FK, Campbell SA. (2015). Examining the limits of cellular adaptation bursting mechanisms in biologically-based excitatory networks of the hippocampus. Journal of computational neuroscience. 39 [PubMed]

Fiebig F, Lansner A. (2017). A Spiking Working Memory Model Based on Hebbian Short-Term Potentiation. The Journal of neuroscience : the official journal of the Society for Neuroscience. 37 [PubMed]

Geminiani A et al. (2018). Complex Dynamics in Simplified Neuronal Models: Reproducing Golgi Cell Electroresponsiveness. Frontiers in neuroinformatics. 12 [PubMed]

Goodman DF, Brette R. (2010). Spike-timing-based computation in sound localization. PLoS computational biology. 6 [PubMed]

Górski T et al. (2018). Dendritic sodium spikes endow neurons with inverse firing rate response to correlated synaptic activity. Journal of computational neuroscience. 45 [PubMed]

Hass J, Hertäg L, Durstewitz D. (2016). A Detailed Data-Driven Network Model of Prefrontal Cortex Reproduces Key Features of In Vivo Activity. PLoS computational biology. 12 [PubMed]

Huang C, Zeldenrust F, Celikel T. (2022). Cortical Representation of Touch in Silico Neuroinformatics. 20 [PubMed]

Jolivet R, Gerstner W. (2004). Predicting spike times of a detailed conductance-based neuron model driven by stochastic spike arrival. Journal of physiology, Paris. 98 [PubMed]

Jolivet R et al. (2008). A benchmark test for a quantitative assessment of simple neuron models. Journal of neuroscience methods. 169 [PubMed]

Jolivet R, Rauch A, Lüscher HR, Gerstner W. (2006). Predicting spike timing of neocortical pyramidal neurons by simple threshold models. Journal of computational neuroscience. 21 [PubMed]

Jones A, Singh N, Huyck CR, Gandhi V. (2016). Neuron-Based Control Mechanisms for a Robotic Arm and Hand ICMRRS 2017: International Conference on Medical Robotics and Robotics for Surgery, Paris, France. 3(2)

Khalil R, Moftah MZ, Moustafa AA. (2017). The effects of dynamical synapses on firing rate activity: a spiking neural network model. The European journal of neuroscience. 46 [PubMed]

Kobayashi R, Tsubo Y, Shinomoto S. (2009). Made-to-order spiking neuron model equipped with a multi-timescale adaptive threshold. Frontiers in computational neuroscience. 3 [PubMed]

Komarov M et al. (2018). New class of reduced computationally efficient neuronal models for large-scale simulations of brain dynamics. Journal of computational neuroscience. 44 [PubMed]

Köndgen H et al. (2008). The dynamical response properties of neocortical neurons to temporally modulated noisy inputs in vitro. Cerebral cortex (New York, N.Y. : 1991). 18 [PubMed]

Linaro D, Ocker GK, Doiron B, Giugliano M. (2019). Correlation Transfer by Layer 5 Cortical Neurons Under Recreated Synaptic Inputs In Vitro. The Journal of neuroscience : the official journal of the Society for Neuroscience. 39 [PubMed]

Lonardoni D et al. (2017). Recurrently connected and localized neuronal communities initiate coordinated spontaneous activity in neuronal networks. PLoS computational biology. 13 [PubMed]

Maes A, Barahona M, Clopath C. (2020). Learning spatiotemporal signals using a recurrent spiking network that discretizes time. PLoS computational biology. 16 [PubMed]

Malerba P, Krishnan GP, Fellous JM, Bazhenov M. (2016). Hippocampal CA1 Ripples as Inhibitory Transients. PLoS computational biology. 12 [PubMed]

Marasco A et al. (2023). An Adaptive Generalized Leaky Integrate-and-Fire Model for Hippocampal CA1 Pyramidal Neurons and Interneurons. Bulletin of mathematical biology. 85 [PubMed]

Mensi S et al. (2012). Parameter extraction and classification of three cortical neuron types reveals two distinct adaptation mechanisms. Journal of neurophysiology. 107 [PubMed]

Morén J, Shibata T, Doya K. (2013). The mechanism of saccade motor pattern generation investigated by a large-scale spiking neuron model of the superior colliculus. PloS one. 8 [PubMed]

Muller E, Buesing L, Schemmel J, Meier K. (2007). Spike-frequency adapting neural ensembles: beyond mean adaptation and renewal theories. Neural computation. 19 [PubMed]

Nicola W, Campbell SA. (2013). Bifurcations of large networks of two-dimensional integrate and fire neurons. Journal of computational neuroscience. 35 [PubMed]

Pena RFO, Zaks MA, Roque AC. (2018). Dynamics of spontaneous activity in random networks with multiple neuron subtypes and synaptic noise : Spontaneous activity in networks with synaptic noise. Journal of computational neuroscience. 45 [PubMed]

Platkiewicz J, Brette R. (2010). A threshold equation for action potential initiation. PLoS computational biology. 6 [PubMed]

Platkiewicz J, Brette R. (2011). Impact of fast sodium channel inactivation on spike threshold dynamics and synaptic integration. PLoS computational biology. 7 [PubMed]

Pospischil M et al. (2008). Minimal Hodgkin-Huxley type models for different classes of cortical and thalamic neurons. Biological cybernetics. 99 [PubMed]

Richert M, Nageswaran JM, Dutt N, Krichmar JL. (2011). An efficient simulation environment for modeling large-scale cortical processing. Frontiers in neuroinformatics. 5 [PubMed]

Stewart RD, Bair W. (2009). Spiking neural network simulation: numerical integration with the Parker-Sochacki method. Journal of computational neuroscience. 27 [PubMed]

Susi G et al. (2021). FNS allows efficient event-driven spiking neural network simulations based on a neuron model supporting spike latency Scientific reports. 11 [PubMed]

Susin E, Destexhe A. (2021). Integration, coincidence detection and resonance in networks of spiking neurons expressing gamma oscillations and asynchronous states PLoS computational biology. 17 [PubMed]

Tchumatchenko T, Clopath C. (2014). Oscillations emerging from noise-driven steady state in networks with electrical synapses and subthreshold resonance. Nature communications. 5 [PubMed]

Tikidji-Hamburyan RA, El-Ghazawi TA, Narayana V, Bozkus Z. (2017). Software for Brain Network Simulations: A Comparative Study Front. Neuroinform..

Tomm C, Avermann M, Petersen C, Gerstner W, Vogels TP. (2014). Connection-type-specific biases make uniform random network models consistent with cortical recordings. Journal of neurophysiology. 112 [PubMed]

Tomov P, Pena RF, Roque AC, Zaks MA. (2016). Mechanisms of Self-Sustained Oscillatory States in Hierarchical Modular Networks with Mixtures of Electrophysiological Cell Types. Frontiers in computational neuroscience. 10 [PubMed]

Tomsett RJ et al. (2015). Virtual Electrode Recording Tool for EXtracellular potentials (VERTEX): comparing multi-electrode recordings from simulated and biological mammalian cortical tissue. Brain structure & function. 220 [PubMed]

Tonnelier A, Belmabrouk H, Martinez D. (2007). Event-driven simulations of nonlinear integrate-and-fire neurons. Neural computation. 19 [PubMed]

Touboul J, Brette R. (2008). Dynamics and bifurcations of the adaptive exponential integrate-and-fire model. Biological cybernetics. 99 [PubMed]

Van Pottelbergh T, Drion G, Sepulchre R. (2018). Robust Modulation of Integrate-and-Fire Models. Neural computation. 30 [PubMed]

Vasilaki E, Giugliano M. (2014). Emergence of connectivity motifs in networks of model neurons with short- and long-term plastic synapses. PloS one. 9 [PubMed]

Venkadesh S et al. (2018). Evolving Simple Models of Diverse Intrinsic Dynamics in Hippocampal Neuron Types. Frontiers in neuroinformatics. 12 [PubMed]

Vich C, Berg RW, Guillamon A, Ditlevsen S. (2017). Estimation of Synaptic Conductances in Presence of Nonlinear Effects Caused by Subthreshold Ionic Currents. Frontiers in computational neuroscience. 11 [PubMed]

Xu X, Cang J, Riecke H. (2020). Development and Binocular Matching of Orientation Selectivity in Visual Cortex: A Computational Model. Journal of neurophysiology. 123 [PubMed]

Zerlaut Y, Chemla S, Chavane F, Destexhe A. (2018). Modeling mesoscopic cortical dynamics using a mean-field model of conductance-based networks of adaptive exponential integrate-and-fire neurons. Journal of computational neuroscience. 44 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.