Platkiewicz J, Brette R. (2011). Impact of fast sodium channel inactivation on spike threshold dynamics and synaptic integration. PLoS computational biology. 7 [PubMed]

See more from authors: Platkiewicz J · Brette R

References and models cited by this paper

Alle H, Roth A, Geiger JR. (2009). Energy-efficient action potentials in hippocampal mossy fibers. Science (New York, N.Y.). 325 [PubMed]

Angelino E, Brenner MP. (2007). Excitability constraints on voltage-gated sodium channels. PLoS computational biology. 3 [PubMed]

Arsiero M, Lüscher HR, Lundstrom BN, Giugliano M. (2007). The impact of input fluctuations on the frequency-current relationships of layer 5 pyramidal neurons in the rat medial prefrontal cortex. The Journal of neuroscience : the official journal of the Society for Neuroscience. 27 [PubMed]

Attwell D, Laughlin SB. (2001). An energy budget for signaling in the grey matter of the brain. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism. 21 [PubMed]

Azouz R, Gray CM. (1999). Cellular mechanisms contributing to response variability of cortical neurons in vivo. The Journal of neuroscience : the official journal of the Society for Neuroscience. 19 [PubMed]

Azouz R, Gray CM. (2000). Dynamic spike threshold reveals a mechanism for synaptic coincidence detection in cortical neurons in vivo. Proceedings of the National Academy of Sciences of the United States of America. 97 [PubMed]

Azouz R, Gray CM. (2003). Adaptive coincidence detection and dynamic gain control in visual cortical neurons in vivo. Neuron. 37 [PubMed]

Badel L et al. (2008). Dynamic I-V curves are reliable predictors of naturalistic pyramidal-neuron voltage traces. Journal of neurophysiology. 99 [PubMed]

Baranauskas G, Martina M. (2006). Sodium currents activate without a Hodgkin-and-Huxley-type delay in central mammalian neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]

Borg-graham L. (1999). Interpretations of data and mechanisms for hippocampal pyramidal cell models Cerebral Cortex cortical Models. 13

Brette R, Gerstner W. (2005). Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. Journal of neurophysiology. 94 [PubMed]

Cardin JA, Palmer LA, Contreras D. (2008). Cellular mechanisms underlying stimulus-dependent gain modulation in primary visual cortex neurons in vivo. Neuron. 59 [PubMed]

Catterall WA, Goldin AL, Waxman SG. (2005). International Union of Pharmacology. XLVII. Nomenclature and structure-function relationships of voltage-gated sodium channels. Pharmacological reviews. 57 [PubMed]

Cole KS, Guttman R, Bezanilla F. (1970). Nerve membrane excitation without threshold. Proceedings of the National Academy of Sciences of the United States of America. 65 [PubMed]

Destexhe A, Paré D. (1999). Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo. Journal of neurophysiology. 81 [PubMed]

Destexhe A, Rudolph M, Fellous JM, Sejnowski TJ. (2001). Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience. 107 [PubMed]

Destexhe A, Rudolph M, Paré D. (2003). The high-conductance state of neocortical neurons in vivo. Nature reviews. Neuroscience. 4 [PubMed]

Dodla R, Svirskis G, Rinzel J. (2006). Well-timed, brief inhibition can promote spiking: postinhibitory facilitation. Journal of neurophysiology. 95 [PubMed]

Ferragamo MJ, Oertel D. (2002). Octopus cells of the mammalian ventral cochlear nucleus sense the rate of depolarization. Journal of neurophysiology. 87 [PubMed]

Fleidervish IA, Friedman A, Gutnick MJ. (1996). Slow inactivation of Na+ current and slow cumulative spike adaptation in mouse and guinea-pig neocortical neurones in slices. The Journal of physiology. 493 ( Pt 1) [PubMed]

Fourcaud-Trocmé N, Hansel D, van Vreeswijk C, Brunel N. (2003). How spike generation mechanisms determine the neuronal response to fluctuating inputs. The Journal of neuroscience : the official journal of the Society for Neuroscience. 23 [PubMed]

Fricker D, Verheugen JA, Miles R. (1999). Cell-attached measurements of the firing threshold of rat hippocampal neurones. The Journal of physiology. 517 ( Pt 3) [PubMed]

Gittelman JX, Tempel BL. (2006). Kv1.1-containing channels are critical for temporal precision during spike initiation. Journal of neurophysiology. 96 [PubMed]

Goldberg EM et al. (2008). K+ channels at the axon initial segment dampen near-threshold excitability of neocortical fast-spiking GABAergic interneurons. Neuron. 58 [PubMed]

Goodman D, Brette R. (2008). Brian: a simulator for spiking neural networks in python. Frontiers in neuroinformatics. 2 [PubMed]

Guan D, Lee JC, Higgs MH, Spain WJ, Foehring RC. (2007). Functional roles of Kv1 channels in neocortical pyramidal neurons. Journal of neurophysiology. 97 [PubMed]

Henze DA, Buzsáki G. (2001). Action potential threshold of hippocampal pyramidal cells in vivo is increased by recent spiking activity. Neuroscience. 105 [PubMed]

Hille B. (2001). Ionic Channels of Excitable Membranes.

Hu W et al. (2009). Distinct contributions of Na(v)1.6 and Na(v)1.2 in action potential initiation and backpropagation. Nature neuroscience. 12 [PubMed]

Huguenard JR, Hamill OP, Prince DA. (1988). Developmental changes in Na+ conductances in rat neocortical neurons: appearance of a slowly inactivating component. Journal of neurophysiology. 59 [PubMed]

Izhikevich EM. (2007). Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting.

Jercog PE, Svirskis G, Kotak VC, Sanes DH, Rinzel J. (2010). Asymmetric excitatory synaptic dynamics underlie interaural time difference processing in the auditory system. PLoS biology. 8 [PubMed]

Kim KJ, Rieke F. (2003). Slow Na+ inactivation and variance adaptation in salamander retinal ganglion cells. The Journal of neuroscience : the official journal of the Society for Neuroscience. 23 [PubMed]

Kuba H, Ishii TM, Ohmori H. (2006). Axonal site of spike initiation enhances auditory coincidence detection. Nature. 444 [PubMed]

Kuba H, Ohmori H. (2009). Roles of axonal sodium channels in precise auditory time coding at nucleus magnocellularis of the chick. The Journal of physiology. 587 [PubMed]

Lecar H, Nossal R. (1971). Theory of threshold fluctuations in nerves. I. Relationships between electrical noise and fluctuations in axon firing. Biophysical journal. 11 [PubMed]

Lecar H, Nossal R. (1971). Theory of threshold fluctuations in nerves. II. Analysis of various sources of membrane noise. Biophysical journal. 11 [PubMed]

Lennie P. (2003). The cost of cortical computation. Current biology : CB. 13 [PubMed]

Léger JF, Stern EA, Aertsen A, Heck D. (2005). Synaptic integration in rat frontal cortex shaped by network activity. Journal of neurophysiology. 93 [PubMed]

Martina M, Jonas P. (1997). Functional differences in Na+ channel gating between fast-spiking interneurones and principal neurones of rat hippocampus. The Journal of physiology. 505 ( Pt 3) [PubMed]

Mathews PJ, Jercog PE, Rinzel J, Scott LL, Golding NL. (2010). Control of submillisecond synaptic timing in binaural coincidence detectors by K(v)1 channels. Nature neuroscience. 13 [PubMed]

McCormick DA, Shu Y, Yu Y. (2007). Neurophysiology: Hodgkin and Huxley model--still standing? Nature. 445 [PubMed]

McGinley MJ, Oertel D. (2006). Rate thresholds determine the precision of temporal integration in principal cells of the ventral cochlear nucleus. Hearing research. 216-217 [PubMed]

Mercer JN, Chan CS, Tkatch T, Held J, Surmeier DJ. (2007). Nav1.6 sodium channels are critical to pacemaking and fast spiking in globus pallidus neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 27 [PubMed]

Naundorf B, Wolf F, Volgushev M. (2006). Unique features of action potential initiation in cortical neurons. Nature. 440 [PubMed]

Niven JE, Laughlin SB. (2008). Energy limitation as a selective pressure on the evolution of sensory systems. The Journal of experimental biology. 211 [PubMed]

Palmer LM, Stuart GJ. (2006). Site of action potential initiation in layer 5 pyramidal neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]

Paré D, Shink E, Gaudreau H, Destexhe A, Lang EJ. (1998). Impact of spontaneous synaptic activity on the resting properties of cat neocortical pyramidal neurons In vivo. Journal of neurophysiology. 79 [PubMed]

Piwkowska Z et al. (2008). Characterizing synaptic conductance fluctuations in cortical neurons and their influence on spike generation. Journal of neuroscience methods. 169 [PubMed]

Platkiewicz J, Brette R. (2010). A threshold equation for action potential initiation. PLoS computational biology. 6 [PubMed]

Priebe NJ, Ferster D. (2008). Inhibition, spike threshold, and stimulus selectivity in primary visual cortex. Neuron. 57 [PubMed]

Remme MW, Rinzel J. (2011). Role of active dendritic conductances in subthreshold input integration. Journal of computational neuroscience. 31 [PubMed]

Ringach DL, Malone BJ. (2007). The operating point of the cortex: neurons as large deviation detectors. The Journal of neuroscience : the official journal of the Society for Neuroscience. 27 [PubMed]

Royeck M et al. (2008). Role of axonal NaV1.6 sodium channels in action potential initiation of CA1 pyramidal neurons. Journal of neurophysiology. 100 [PubMed]

Rubinstein JT. (1995). Threshold fluctuations in an N sodium channel model of the node of Ranvier. Biophysical journal. 68 [PubMed]

Rush AM, Dib-Hajj SD, Waxman SG. (2005). Electrophysiological properties of two axonal sodium channels, Nav1.2 and Nav1.6, expressed in mouse spinal sensory neurones. The Journal of physiology. 564 [PubMed]

Sigworth FJ. (1980). The variance of sodium current fluctuations at the node of Ranvier. The Journal of physiology. 307 [PubMed]

Simon JZ, Carr CE, Kalluri S, Soares D, Iyer S. (2005). Are neurons adapted for specific computations? examples from temporal coding in the auditory system 23 Problems in Systems Neuroscience.

White JA, Rubinstein JT, Kay AR. (2000). Channel noise in neurons. Trends in neurosciences. 23 [PubMed]

Wickens JR, Wilson CJ. (1998). Regulation of action-potential firing in spiny neurons of the rat neostriatum in vivo. Journal of neurophysiology. 79 [PubMed]

Wilent WB, Contreras D. (2005). Stimulus-dependent changes in spike threshold enhance feature selectivity in rat barrel cortex neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 25 [PubMed]

Yu Y, Shu Y, McCormick DA. (2008). Cortical action potential backpropagation explains spike threshold variability and rapid-onset kinetics. The Journal of neuroscience : the official journal of the Society for Neuroscience. 28 [PubMed]

de Polavieja GG, Harsch A, Kleppe I, Robinson HP, Juusola M. (2005). Stimulus history reliably shapes action potential waveforms of cortical neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 25 [PubMed]

References and models that cite this paper

Brette R. (2012). Computing with neural synchrony. PLoS computational biology. 8 [PubMed]

Fardet T, Levina A. (2020). Simple Models Including Energy and Spike Constraints Reproduce Complex Activity Patterns and Metabolic Disruptions PLoS computational biology. 16 [PubMed]

Masquelier T, Saeed Reza. (2018). Optimal localist and distributed coding of spatiotemporal spike patterns through STDP and coincidence detection Front. Comput. Neurosci..

Mensi S et al. (2012). Parameter extraction and classification of three cortical neuron types reveals two distinct adaptation mechanisms. Journal of neurophysiology. 107 [PubMed]

Michalikova M, Remme MW, Kempter R. (2017). Spikelets in Pyramidal Neurons: Action Potentials Initiated in the Axon Initial Segment That Do Not Activate the Soma. PLoS computational biology. 13 [PubMed]

Powers RK, Heckman CJ. (2015). Contribution of intrinsic motoneuron properties to discharge hysteresis and its estimation based on paired motor unit recordings: a simulation study. Journal of neurophysiology. 114 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.