Cruse H, Dürr V, Schmitz J. (2007). Insect walking is based on a decentralized architecture revealing a simple and robust controller. Philosophical transactions. Series A, Mathematical, physical, and engineering sciences. 365 [PubMed]

See more from authors: Cruse H · Dürr V · Schmitz J

References and models cited by this paper

Akay T, Haehn S, Schmitz J, Büschges A. (2004). Signals from load sensors underlie interjoint coordination during stepping movements of the stick insect leg. Journal of neurophysiology. 92 [PubMed]

Ayers J. (2002). A conservative biomimetic control architecture for autonomous underwater robots Neurotechnology for biomimetic robots.

BÜSchges A, Schmitz J, BÄSsler U. (1995). Rhythmic patterns in the thoracic nerve cord of the stick insect induced by pilocarpine The Journal of experimental biology. 198 [PubMed]

Bartling C, Schmitz J. (2000). Reaction to disturbances of a walking leg during stance. The Journal of experimental biology. 203 [PubMed]

Bassler U. (1983). Neural basis of elementary behavior in stick insects.

Bassler U. (1988). Functional principles of pattern generation for walking movements of stick insect forelegs: the role of the femoral chordotonal organ afferences J Exp Biol. 136

Bassler U, Wegner U. (1983). Motor output of the denervated thoracic ventral nerve cord in the stick insect Carausius morosus J Exp Biol. 105

Beer RD, Espenschied KS, Quinn RD, Chie Chiel, H HJ. (1993). Leg coordination mechanisms in stick insect applied to hexapod robot locomotion Adapt Behav. 1

Bell WJ, Kramer E. (1979). Search and anemotactic orientation of cockroaches J Insect Physiol. 25

Berkowitz A, Laurent G. (1996). Local control of leg movements and motor patterns during grooming in locusts. The Journal of neuroscience : the official journal of the Society for Neuroscience. 16 [PubMed]

Blasing B. (2006). Crossing large gaps: a simulation study of stick insect behavior Adapt Behav. 14

Bläsing B, Cruse H. (2004). Mechanisms of stick insect locomotion in a gap-crossing paradigm. Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology. 190 [PubMed]

Bowerman RF. (1975). The control of walking in the scorpion. I. Leg movements during normal walking J Comp Physiol. 100

Brooks RA. (1991). Intelligence without reason Proc 12th Int Joint Conf on Artificial Intelligence.

Brunn DE, Dean J. (1994). Intersegmental and local interneurons in the metathorax of the stick insect Carausius morosus that monitor middle leg position. Journal of neurophysiology. 72 [PubMed]

Burrows M. (1992). Local circuits for the control of leg movements in an insect. Trends in neurosciences. 15 [PubMed]

Burrows M. (1996). The neurobiology of an insect brain.

Bässler U, Büschges A. (1998). Pattern generation for stick insect walking movements--multisensory control of a locomotor program. Brain research. Brain research reviews. 27 [PubMed]

Büschges A. (2005). Sensory control and organization of neural networks mediating coordination of multisegmental organs for locomotion. Journal of neurophysiology. 93 [PubMed]

Chang S, Johnston RJ, Frøkjaer-Jensen C, Lockery S, Hobert O. (2004). MicroRNAs act sequentially and asymmetrically to control chemosensory laterality in the nematode. Nature. 430 [PubMed]

Clarac F, Chasserat C. (1980). Interlimb coordinating factors during driven walking in crustacea. A comparative study of absolute and relative coordination J Comp Physiol. 139

Clarac F, Cruse H. (1982). Comparison of forces developed by the leg of the rock lobster when walking free or on a treadmill Biol Cybern. 43

Comer CM, Parks L, Halvorsen MB, Breese-Terteling A. (2003). The antennal system and cockroach evasive behavior. II. Stimulus identification and localization are separable antennal functions. Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology. 189 [PubMed]

Comer CM, Stierle IE, Getman M. (1994). Multisensory control of escape in the cockroach Periplaneta americana. I. Initial evidence from patterns of wind-evoked behavior J Comp Physiol A. 174

Cruse H. (1976). The control of body position in the stick insect (Carausius morosus), when walking over uneven surfaces Biol Cybern. 24

Cruse H. (1976). The function of the legs in the free walking stick insect Carausius morosus J Comp Physiol. 112

Cruse H. (1979). The control of the anterior extreme position of the hindleg of a walking insect, Carausius morosus Physiol Entomol. 4

Cruse H. (1985). Which parameters control the leg movement of a walking insect? II. The start of the swing phase J Exp Biol. 116

Cruse H. (1985). Coactivating influences between neighbouring legs in walking insects J Exp Biol. 114

Cruse H. (1990). What mechanisms coordinate leg movement in walking arthropods? Trends in neurosciences. 13 [PubMed]

Cruse H. (2002). The functional sense of central oscillations in walking. Biological cybernetics. 86 [PubMed]

Cruse H. (2003). The evolution of cognition hypothesis Cogn Sci. 27

Cruse H. (2006). Neural networks as cybernetic systems. Brain, minds, and media http:--www.brains-minds-media.org-archive-289.

Cruse H, Bartling C. (1995). Movement of joint angles in the legs of a walking insect, Carausius morosus J Insect Physiol. 41

Cruse H, Bartling C, Cymbalyuk G, Dean J, Dreifert M. (1995). A modular artificial neural net for controlling a six-legged walking system. Biological cybernetics. 72 [PubMed]

Cruse H et al. (1992). Kinematic model of stick insect as an example of a 6-legged walking system Adapt Behav. 1

Cruse H, Dean J, Suilmann M. (1984). The contributions of diverse sense organs in the control of leg movement by a walking insect J Comp Physiol. 154

Cruse H, Kindermann T, Bartling C. (1995). High-pass filtered positive feedback for decentralized control of cooperation Advances in artificial life.

Cruse H et al. (1995). Walking: a complex behaviour controlled by simple networks Adapt Behav. 3

Cruse H, Kindermann T, Schumm M, Dean J, Schmitz J. (1998). Walknet-a biologically inspired network to control six-legged walking. Neural networks : the official journal of the International Neural Network Society. 11 [PubMed]

Cruse H, Knauth A. (1989). Coupling mechanisms between the contralateral legs of a walking insect (Carausius morosus) J Exp Biol. 144

Cruse H, Riemenschneider D, Stammer W. (1989). Control of body position of a stick insect standing on uneven surfaces Biol Cybern. 61

Cruse H, Saxler G. (1980). Oscillations of force in the standing legs of a walking insect (Carausius morosus) Biol Cybern. 36

Cruse H, Schmitz J. (1983). The control system of the femur-tibia joint in the standing leg of a walking stick insect Carausius morosus J Exp Biol. 102

Cruse H, Schmitz J, Braun U, Schweins A. (1993). Control of body height in a stick insect walking on a treadwheel J Exp Biol. 181

Cruse H, Schmitz J, Durr V, Krause A. (2003). Neuroethological concepts and their transfer to walking machines Int J Robot Res. 22

Cruse H, Schwarze W. (1988). Mechanisms of coupling between the ipsilateral legs of a walking insect (Carausius morosus) J Exp Biol. 138

Cruse H, Warnecke H. (1992). Coordination of the legs of a slow-walking cat. Experimental brain research. 89 [PubMed]

Dean J. (1984). Control of leg protraction in the stick insect: a targeted movement showing compensation for externally applied forces J Comp Physiol A. 155

Dean J. (1990). Coding proprioceptive information to control movement to a target: simulation with a simple neural network Biol Cybern. 63

Dean J, Schmitz J. (1992). The two groups of sensilla in the ventral coxal hair plate of Carausius morosus have different roles during walking Physiol Entomol. 17

Dean J, Wendler G. (1983). Stick insect locomotion on a walking wheel: interleg coordination of leg position J Exp Biol. 103

Degtyarenko AM, Simon ES, Norden-Krichmar T, Burke RE. (1998). Modulation of oligosynaptic cutaneous and muscle afferent reflex pathways during fictive locomotion and scratching in the cat. Journal of neurophysiology. 79 [PubMed]

Delcomyn F. (1980). Neural basis of rhythmic behavior in animals. Science (New York, N.Y.). 210 [PubMed]

Delcomyn F. (1987). Motor activity during searching and walking movements of cockroach legs. The Journal of experimental biology. 133 [PubMed]

Diederich B, Schumm M, Cruse H. (2002). Stick insects walking along inclined surfaces. Integrative and comparative biology. 42 [PubMed]

Donelan JM, Pearson KG. (2004). Contribution of force feedback to ankle extensor activity in decerebrate walking cats. Journal of neurophysiology. 92 [PubMed]

Dur Durr, Krause A. (2001). The stick insect antenna as a biological paragon for an actively moved tactile probe for obstacle detection Climbing and walking robots from biology to industrial applications Proc 4th Int Conf Climbing and Walking Robots.

Durr V. (2005). Nutzung taktiler Information von Antennen zur Laufbewegungssteuerung Autonomes Laufen.

Durr V, Gebhardt MJ, Staudacher E. (2005). Antennal movements and mechanoreception: neurobiology of active tactile sensors Adv Insect Physiol. 32

Durr V, Matheson T. (2003). Graded limb targeting in an insect is caused by the shift of a single movement pattern. Journal of neurophysiology. 90 [PubMed]

Dürr V. (2001). Stereotypic leg searching movements in the stick insect: kinematic analysis, behavioural context and simulation. The Journal of experimental biology. 204 [PubMed]

Dürr V. (2005). Context-dependent changes in strength and efficacy of leg coordination mechanisms. The Journal of experimental biology. 208 [PubMed]

Dürr V, Ebeling W. (2005). The behavioural transition from straight to curve walking: kinetics of leg movement parameters and the initiation of turning. The Journal of experimental biology. 208 [PubMed]

Dürr V, König Y, Kittmann R. (2001). The antennal motor system of the stick insect Carausius morosus: anatomy and antennal movement pattern during walking. Journal of comparative physiology. A, Sensory, neural, and behavioral physiology. 187 [PubMed]

Ebeling W, Durr V. (2006). Perturbation of leg protraction causes context-dependent modulation of inter-leg coordination, but not of avoidance reflexes. J Exp Biol. 209

Ekeberg O, Blümel M, Büschges A. (2004). Dynamic simulation of insect walking. Arthropod structure & development. 33 [PubMed]

Ekeberg O, Grillner S. (1999). Simulations of neuromuscular control in lamprey swimming. Philosophical transactions of the Royal Society of London. Series B, Biological sciences. 354 [PubMed]

Ekeberg O, Pearson K. (2005). Computer simulation of stepping in the hind legs of the cat: an examination of mechanisms regulating the stance-to-swing transition. Journal of neurophysiology. 94 [PubMed]

Epstein S, Cruse H. (1982). Peripheral influences on the movement of the legs in a walking insect Carausius morosus J Exp Biol. 101

Espenschied KS, Quinn RD. (1996). Biologically based distributed control and local reflexes improve rough terrain locomotion in a hexapod robot Robot Auton Syst. 18

Frik M, Guddat M. (1999). A novel approach to autonomous control of walking machines Climbing and walking robots and the suppport technologies for mobile machines Proc of the 2nd Int Conf on Climbing and Walking Robots (CLAWAR 1999).

Full RJ, Blickhan R. (1993). Similarity in multilegged locomotion: bouncing like a monopode J Comp Physiol A. 173

Full RJ, Blickhan R, Ting LH. (1991). Leg design in hexapedal runners. The Journal of experimental biology. 158 [PubMed]

Full RJ, Kubow T, Schmitt J, Holmes P, Koditschek D. (2002). Quantifying dynamic stability and maneuverability in legged locomotion. Integrative and comparative biology. 42 [PubMed]

Full RJ, Tu MS. (1991). Mechanics of a rapid running insect: two-, four- and six-legged locomotion. The Journal of experimental biology. 156 [PubMed]

Gardner JF. (1991). Force distribution in walking machines over rough terrain J Dynamic Syst Meas Control. 113

Geyer H, Seyfarth A, Blickhan R. (2003). Positive force feedback in bouncing gaits? Proceedings. Biological sciences. 270 [PubMed]

Gnatzy W, Heulein R. (1986). Digger wasp against crickets. I. Receptors involved in the antipredator strategies of the prey Naturwissenschaften. 73

Gorinevsky DM, Shneider AY. (1990). Force control in locomotion of legged vehicles over rigid and soft surfaces Int J Robot Res. 9

Graham D. (1978). Unusual step patterns in the free walking grasshopper. Neoconocephalus robustus. II. A critical test of the leg interactions underlying different models of hexapodco-ordination J Exp Biol. 73

Graham D. (1979). Effects of circum-oesophageal lesion on the behaviour of the stick insect Carausius morosus Biol Cybern. 32

Graham D. (1985). Pattern and control of walking in insects Adv Insect Physiol. 18

Grillner S. (1981). Control of locomotion in bipeds, tetrapods and fish. Handbook of Physiology, section 1, The Nervous system, vol II.

Grillner S et al. (1995). Neural networks that co-ordinate locomotion and body orientation in lamprey. Trends in neurosciences. 18 [PubMed]

Heinzel HG, Bohm H, Scharstein H, Wendler G. (1991). The course-control system of beetles walking in an air-current field J Comp Physiol A. 169

Hengstenberg R. (1993). Multisensory control in insect oculomotor systems. Reviews of oculomotor research. 5 [PubMed]

Holst EV. (1939). Die relative Koordinationals Phanomen und als Methode zentralnervoser Funktionsanalyse Erg Physiol. 42

Holst EV. (1943). Uber relative Koordination bei Arthropoden Pflugers Arch. 246

Honegger HW. (1981). A preliminary note on a new optomotor response in crickets: antennal tracking of moving targets J Comp Physiol A. 142

Horn E, Bischof E. (1983). Gravity reception in crickets: the influence of cercal and antennal afferents on the head position J Comp Physiol A. 150

Horseman BG, Gebhardt MJ, Honegger MJ. (1997). Involvement of the suboesophageal and thoracic ganglia in the control of antennal movements in crickets J Comp Physiol A. 181

Jander JP. (1982). Untersuchungen zum Mechanismus und zur zentralnervosen Steuerung desKurvenlaufs bei Stabheuschrecken (Carausius morosus) Doctoral Dissertation University of Koln.

Jander JP. (1985). Mechanical stability in stick insects when walking straight and around curves Insect locomotion.

Jindrich DL, Full RJ. (1999). Many-legged maneuverability: dynamics of turning in hexapods The Journal of experimental biology. 202 (Pt 12) [PubMed]

Jindrich DL, Full RJ. (2002). Dynamic stabilization of rapid hexapedal locomotion. The Journal of experimental biology. 205 [PubMed]

Kawato M, Gomi H. (1992). The cerebellum and VOR/OKR learning models. Trends in neurosciences. 15 [PubMed]

Kindermann T. (2002). Behavior and adaptability of a six-legged walking system with highly distributed control Adapt Behav. 9

Klein CA, Kittivatcharapong S. (1990). Optimal force distribution for the legs of a walking machine with friction cone constraints IEEE Trans Robot Automat. 6

Linder C. (2005). Self-organization in a simple task of motor control based on spatial encoding Adapt Behav. 13

Linder CR. (2002). Self organisation in a simple task of motor control Proc Seventh Int Conf on Simulation of Adaptive Behavior: from animals to animats.

Linsenmair KE. (1973). Die Windorientierung laufender Insekten Fortschr Zool. 21

Marder E, Bucher D. (2001). Central pattern generators and the control of rhythmic movements. Current biology : CB. 11 [PubMed]

Markowitsch HJ. (1997). The functional neuroanatomy of episodic memory retrieval. Trends in neurosciences. 20 [PubMed]

Matheson T. (1997). Hindleg targeting during scratching in the locust The Journal of experimental biology. 200 [PubMed]

Matheson T, Dürr V. (2003). Load compensation in targeted limb movements of an insect. The Journal of experimental biology. 206 [PubMed]

Noah JA, Quimby L, Frazier SF, Zill SN. (2001). Force detection in cockroach walking reconsidered: discharges of proximal tibial campaniform sensilla when body load is altered. Journal of comparative physiology. A, Sensory, neural, and behavioral physiology. 187 [PubMed]

Okada J, Toh Y. (2000). The role of antennal hair plates in object-guided tactile orientation of the cockroach (Periplaneta americana). Journal of comparative physiology. A, Sensory, neural, and behavioral physiology. 186 [PubMed]

Pearson KG. (1993). Common principles of motor control in vertebrates and invertebrates. Annual review of neuroscience. 16 [PubMed]

Pearson KG, Wolf H. (1987). Comparison of motor patterns in the intact and deafferented flight system of the locust. I. Electromyographic analysis J Comp Physiol A. 160

Pearson KG, Wolf H. (1987). Comparison of motor patterns in the intact and deafferented flight system of the locust J Comp Physiol A. 160

Pelletier Y, McLeod CD. (1994). Obstacle perception by insect antennae during terrestrial locomotion Physiol Entomol. 19

Pfeifer R, Scheier C. (2001). Understanding intelligence.

Pick S, Strauss R. (2005). Goal-driven behavioral adaptations in gap-climbing Drosophila. Current biology : CB. 15 [PubMed]

Prochazka A, Gillard D, Bennett DJ. (1997). Implications of positive feedback in the control of movement. Journal of neurophysiology. 77 [PubMed]

Prochazka A, Gillard D, Bennett DJ. (1997). Positive force feedback control of muscles. Journal of neurophysiology. 77 [PubMed]

Prochazka A, Gritsenko V, Yakovenko S. (2002). Sensory control of locomotion: reflexes versus higher-level control. Advances in experimental medicine and biology. 508 [PubMed]

Ralston HJ, Inman VT, Todd F. (1981). Human walking.

Roggendorf T. (2005). Comparing different controllers for the coordination of a six-legged walker. Biological cybernetics. 92 [PubMed]

Schief A, von Seelen W, Stagge J, Winkler G. (1971). [Reception of disrupted signals by the weak electric fish Gnathonemus petersii]. Kybernetik. 9 [PubMed]

Schmitz J. (1993). Load-compensating reactions in the proximal leg joints of stick insects during standing and walking J Exp Biol. 183

Schmitz J, Dean J, Kindermann T, Schumm M, Cruse H. (2001). A biologically inspired controller for hexapod walking: simple solutions by exploiting physical properties. The Biological bulletin. 200 [PubMed]

Schmitz J, Hafeld G. (1989). The treading-on-tarsus reflex in stick insects: phase-dependence and modifications of the motor output during walking J Exp Biol. 143

Schmitz J, Schumann K, Kamp AV. (2000). Mechanisms for self-adaptation of posture and movement to increased load Soc Neursci Abstr.

Schneider A, Cruse H, Schmitz J. (2005). A biologically inspired active compliant joint using local positive velocity feedback (LPVF). IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society. 35 [PubMed]

Schneider A, Cruse H, Schmitz J. (2006). Decentralized control of elastic limbs in closed kinematic chains Int J Robot Res. 25

Schumm M, Cruse H. (2006). Control of swing movement: influences of differently shaped substrate. Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology. 192 [PubMed]

Siegler MV, Burrows M. (1986). Receptive fields of motor neurons underlying local tactile reflexes in the locust. The Journal of neuroscience : the official journal of the Society for Neuroscience. 6 [PubMed]

Ting LH, Blickhan R, Full RJ. (1994). Dynamic and static stability in hexapedal runners. The Journal of experimental biology. 197 [PubMed]

Tryba AK, Ritzmann RE. (2000). Multi-joint coordination during walking and foothold searching in the Blaberus cockroach. I. Kinematics and electromyograms. Journal of neurophysiology. 83 [PubMed]

Wagner H et al. (1995). Adaptive properties of hard-wired neuronal systems Verh Dt Zool Ges. 88

Watson JT, Ritzmann RE. (1998). Leg kinematics and muscle activity during treadmill running in the cockroach, Blaberus discoidalis: I. Slow running. Journal of comparative physiology. A, Sensory, neural, and behavioral physiology. 182 [PubMed]

Weidemann HJ, Eltze J, Pfeiffer F. (1995). Six-legged technical walking considering biological principles Robot Autonom Syst. 14

Weidemann HJ, Eltze J, Pfeiffer F, The TUM. (1994). The TUM walking machine Intelligent automation and soft computing. Trends in research, development and applications. 2

Wendler G. (1964). Laufen und Stehen der Stabheuschrecke: Sinnesborsten in den Beingelenken alsGlieder von Regelkreisen Z Vergl Physiol. 48

Wilson DM. (1966). Insect walking. Annual review of entomology. 11 [PubMed]

Wolpert DM, Ghahramani Z. (2000). Computational principles of movement neuroscience. Nature neuroscience. 3 Suppl [PubMed]

Yakovenko S, Gritsenko V, Prochazka A. (2004). Contribution of stretch reflexes to locomotor control: a modeling study. Biological cybernetics. 90 [PubMed]

Zill S, Schmitz J, Büschges A. (2004). Load sensing and control of posture and locomotion. Arthropod structure & development. 33 [PubMed]

Zollikofer C. (1994). STEPPING PATTERNS IN ANTS - INFLUENCE OF SPEED AND CURVATURE The Journal of experimental biology. 192 [PubMed]

References and models that cite this paper
This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.